1
|
Jin L, Jin N, Wang S, Huang S, Yang X, Xu Z, Jiang S, Lyu J, Yu J. Moderate salt stress aids in the enhancement of nutritional and flavor quality in tomato ( Solanum lycopersicum L.) fruits. Food Chem X 2025; 26:102330. [PMID: 40115498 PMCID: PMC11923833 DOI: 10.1016/j.fochx.2025.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Salt stress has been found to enhance the quality of certain plants, yet its influence on fruit flavor remains largely unexplored. Our study probes the impact of salinity on the nutritional and flavor profile of tomatoes. Tomato plants were exposed to 0, 30, 50, 70, 90, and 110 mM of NaCl. Moderate salinity levels (50-70 mM) were found to boost the nutritional value of tomatoes, with increases in soluble solids, protein, and sugar levels. However, the concentration of key minerals such as K, Mg, and Mn declined with escalating salinity. Furthermore, the number of volatile compounds has increased, and the content of different types (alcohols, aldehydes, esters, etc.) has also significantly increased. Salinity stress also significantly influenced the levels of characteristic volatile compounds, especially hexanal, phenylethyl alcohol, and 6-methyl-5-hepten-2-one. Overall, these results will provide valuable strategies for producing high-quality tomatoes.
Collapse
Affiliation(s)
- Li Jin
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
| | - Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Shuyan Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou, Gansu Province 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| |
Collapse
|
2
|
Pateraki A, Psillakis E. Vacuum-assisted headspace solid phase microextraction for monitoring ripening-induced changes in tomato volatile profile. J Chromatogr A 2025; 1740:465556. [PMID: 39626334 DOI: 10.1016/j.chroma.2024.465556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
This work proposes, for the first time, the use of vacuum-assisted headspace solid phase microextraction (Vac-HS-SPME) for studying the free volatiles in tomato fruits. Initially, a comparative optimization between Vac-HS-SPME and regular HS-SPME was conducted, examining the effects of sampling time (15-60 min) and temperature (40 and 60°C) on the extraction of 29 target compounds from tomato puree samples. Compared to regular HS-SPME, sampling under vacuum resulted in the detection of nine additional analytes at 40°C, and an extra three at 60°C. The optimized methods (45 minutes sampling with Vac-HS-SPME at 40°C and regular HS-SPME at 60°C) were then successfully applied for the semi-quantitative comparison of free volatiles during on-plant ripening. These studies revealed an increase in volatiles across the six ripening stages considered (mature green, breaker, turning, pink, light red and red ripe) that was dominated by aldehydes. Compared to HS-SPME, the optimized Vac-HS-SPME showed substantial improvement in extraction efficiencies, and enabled the detection of key volatiles at earlier ripening stages, such as the breaker and turning stages. Overall, compared to the regular method, this study demonstrated that Vac-HS-SPME is a powerful approach that provides additional insights on free volatiles in fruits, even when sampling at lower temperatures.
Collapse
Affiliation(s)
- Angeliki Pateraki
- Laboratory of Aquatic Chemistry, School of Chemical and Environmental Engineering, Polytechneioupolis, Technical University of Crete, 73100 Chania-Crete, Greece
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Chemical and Environmental Engineering, Polytechneioupolis, Technical University of Crete, 73100 Chania-Crete, Greece.
| |
Collapse
|
3
|
Kakabouki I, Roussis I, Krokida M, Mavroeidis A, Stavropoulos P, Karydogianni S, Beslemes D, Tigka E. Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato ( Lycopersicon esculentum Mill.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1852. [PMID: 38999692 PMCID: PMC11244002 DOI: 10.3390/plants13131852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Processing tomato (Lycopersicon esculentum Mill.) is regarded amongst the most dominant horticultural crops globally. Yet, due to its elevated water and fertilization needs, its environmental footprint is significantly high. The recent efforts to reduce the footprint of agriculture have rekindled the search for optimized fertilization regimes in tomato. The aim of the present study was to assess the effect of different urea fertilizers and tomato pomace-based composts on the performance and quality traits of processing tomato. A two-year field experiment was conducted in the Larissa region, Central Greece, during 2018-2019. The experiment was set up in a randomized complete block design (RCBD), with five treatments: control, urea (Urea), urea with nitrification and urease inhibitors (Urea + NI + UI), processing tomato pomace with farmyard manure (TP + FM), and processing tomato pomace with compost from plant residues (TP + CM). Measurements included soil total nitrogen (STN), soil organic matter (SOM), root length density (RLD), arbuscular mycorrhiza fungi (AMF) colonization, dry weight per plant, fruit yield (number per plant, total yield, weight, diameter), fruit firmness, total soluble solids (TSS), titratable acidity (TA), lycopene content and yield, and fruit surface color (L*, a*, b*, CI). Overall, the best results in soil properties and quality traits were reported in the organic fertilization treatments (STN, SOM, AMF, TSS, TA, lycopene content, L*, a*, b*) and the differences among TP + FM and TP + CM were insignificant in their majority. On the contrary, fruit yield and its components were significantly improved in Urea + NI + UI.
Collapse
Affiliation(s)
- Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (P.S.); (S.K.)
| | - Ioannis Roussis
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (P.S.); (S.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Antonios Mavroeidis
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (P.S.); (S.K.)
| | - Panteleimon Stavropoulos
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (P.S.); (S.K.)
| | - Stella Karydogianni
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (A.M.); (P.S.); (S.K.)
| | - Dimitrios Beslemes
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization Demeter, 41335 Larissa, Greece; (D.B.); (E.T.)
| | - Evangelia Tigka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization Demeter, 41335 Larissa, Greece; (D.B.); (E.T.)
| |
Collapse
|
4
|
Wu J, Chen Y, Xu Y, An Y, Hu Z, Xiong A, Wang G. Effects of Jasmonic Acid on Stress Response and Quality Formation in Vegetable Crops and Their Underlying Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1557. [PMID: 38891365 PMCID: PMC11175075 DOI: 10.3390/plants13111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.
Collapse
Affiliation(s)
- Jiaqi Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yangyang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yujie Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yahong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Zhenzhu Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| |
Collapse
|
5
|
Jin N, Zhang D, Jin L, Wang S, Yang X, Lei Y, Meng X, Xu Z, Sun J, Lyu J, Yu J. Controlling water deficiency as an abiotic stress factor to improve tomato nutritional and flavour quality. Food Chem X 2023; 19:100756. [PMID: 37780342 PMCID: PMC10534109 DOI: 10.1016/j.fochx.2023.100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 10/03/2023] Open
Abstract
Water deficit (WD) irrigation techniques to improve water use efficiency have been rapidly developed. However, the effect of WD irrigation on tomato quality has not been sufficiently studied. Here, we investigated the effects of varying water irrigation levels [T1-T4: 80%, 65%, 55%, and 45% of maximum field moisture capacity (FMC)] and full irrigation (CK: 90% of maximum FMC) on tomato fruits from the mature-green to red-ripening stages, to compare the nutritional and flavour qualities of the resulting tomatoes. The proline, aspartic, malic, citric, and ascorbic acid contents increased, phenylalanine and glutamic acid contents decreased, and the total amino and organic acid contents increased by 18.91% and 26.12%, respectively, in T2-treated fruits. Furthermore, the T2-treated fruits exhibited higher K and P contents alongside improved characteristic aromas. These findings provide novel insights for further improvements in tomato quality while also developing water-saving irrigation techniques.
Collapse
Affiliation(s)
- Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongzhong Lei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianhong Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
7
|
Li R, Cheng J, Liu X, Wang Z, Li H, Guo J, Wang H, Cui N, Zhao L. Optimizing drip fertigation at different periods to improve yield, volatile compounds and cup quality of Arabica coffee. FRONTIERS IN PLANT SCIENCE 2023; 14:1148616. [PMID: 37332688 PMCID: PMC10272449 DOI: 10.3389/fpls.2023.1148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/31/2023] [Indexed: 06/20/2023]
Abstract
How to improve and regulate coffee bean yield and quality through split fertilization in the whole life cycle of coffee is still unclear and deserves further study. A field experiment of 5-year-old Arabica coffee trees was conducted for 2 consecutive years from 2020 to 2022. The fertilizer (750 kg ha-1 year-1, N-P2O5-K2O:20%-20%-20%) was split in three times at early flowering (FL), the berry expansion (BE), and the berry ripening (BR). Taking equal fertilization throughout the growth cycle (FL250BE250BR250) as the control check, variable fertilizations including FL150BE250BR350, FL150BE350BR250, FL250BE150BR350, FL250BE350BR150, FL350BE150BR250, and FL350BE250BR150. Leaf net photosynthetic rate (A net), stomatal conductance (g s), transpiration rate (T r), leaf water use efficiency (LWUE), carboxylation efficiency (CE), partial factor productivity of fertilizer (PFP), bean yield, crop water use efficiency (WUE), bean nutrients, volatile compounds and cup quality, and the correlation of nutrients with volatile compounds and cup quality was evaluated. FL350BE250BR150 had the maximum A net and g s, followed by FL250BE350BR150. The highest dry bean yield and WUE were obtained from FL250BE350BR150, which increased by 8.86% and 8.47% compared with FL250BE250BR250 in two-year average. The ash, total sugar, fat, protein, caffeine and chlorogenic acid in FL250BE350BR150 were 6.47%, 9.48%, 3.60%, 14.02%, 4.85% and 15.42% higher than FL250BE250BR250. Cluster analysis indicated FL150BE350BR250, FL250BE350BR150, FL350BE150BR250 and FL350BE250BR150 under medium roasted degree increased pyrazines, esters, ketones and furans, FL150BE350BR250 and FL250BE350BR150 under dark roasted degree increased ketones and furans. The aroma, flavor, acidity and overall score of medium roasted coffee were higher than dark roasted coffee, while the body score of dark roasted coffee was higher than medium roasted coffee. The nutrient contents were correlated with the volatile compounds and cup quality. TOPSIS indicated that FL250BE350BR150 was the optimal fertilization mode in the xerothermic regions. The obtained optimum fertilization mode can provide a scientific basis for coffee fertilization optimization and management.
Collapse
Affiliation(s)
- Rongmei Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jinhuan Cheng
- Tropical and Subtropical Economic Crops Institute, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaogang Liu
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhihui Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering and College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan, China
| | - Huiyong Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jinjin Guo
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Haidong Wang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China
| | - Ningbo Cui
- State Key Laboratory of Hydraulics and Mountain River Engineering and College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan, China
| | - Lu Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering and College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Lukić I, Išić N, Ban D, Salopek Sondi B, Goreta Ban S. Comprehensive Volatilome Signature of Various Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:177. [PMID: 36616312 PMCID: PMC9824104 DOI: 10.3390/plants12010177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
To investigate in detail the volatilomes of various Brassicaceae species, landraces, and accessions, and to extract specific volatile markers, volatile aroma compounds were isolated from plant samples by headspace solid-phase microextraction and analyzed by gas chromatography/mass spectrometry (HS-SPME-GC/MS). The data obtained were subjected to uni- and multivariate statistical analysis. In general, two cabbage (Brassica oleracea L. var. capitata) landraces emitted the lowest amounts of volatiles generated in the lipoxygenase (LOX) pathway. Wild species Brassica incana Ten. and Brassica mollis Vis. were characterized by relatively high trans-2-hexenal/cis-3-hexen-1-ol ratio in relation to other investigated samples. A Savoy cabbage (Brassica oleracea L. var. sabauda) cultivar and three kale (Brassica oleracea L. var. acephala) accessions exhibited particular similarities in the composition of LOX volatiles, while the LOX volatilome fraction of B. incana and B. mollis partially coincided with that of another wild species, Diplotaxis tenuifolia L. Regarding volatiles formed in the glucosinolate (GSL) pathway, Savoy cabbage and wild species B. incana, B. mollis, and D. tenuifolia showed more intense emission of isothiocyanates than cabbage and kale. Diplotaxis tenuifolia showed a rather limited production of nitriles. The results of this study contribute to the general knowledge about volatile composition from various Brassicaceae species, which could be exploited for their better valorization. Future studies should focus on the influence of various environmental, cultivation, and post-harvest factors to obtain data with a higher level of applicability in practice.
Collapse
Affiliation(s)
- Igor Lukić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Nina Išić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Branka Salopek Sondi
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 25, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Fusco GM, Burato A, Pentangelo A, Cardarelli M, Nicastro R, Carillo P, Parisi M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? PLANTS (BASEL, SWITZERLAND) 2022; 12:14. [PMID: 36616143 PMCID: PMC9824734 DOI: 10.3390/plants12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Three commercial microbial-based biostimulants containing fungi (arbuscular mycorrhizae and Trichoderma spp.) and other microrganisms (plant growth-promoting bacteria and yeasts) were applied on a processing tomato crop in a two-year field experiment in southern Italy. The effects of the growing season and the microorganism-based treatments on the yield, technological traits and functional quality of the tomato fruits were assessed. The year of cultivation affected yield (with a lower fruit weight, higher marketable to total yield ratio and higher percentage of total defective fruits in 2020) and technological components (higher dry matter, titratable acidity, total soluble solids content in 2020). During the first year of the trial, the consortia-based treatments enhanced the soluble solids content (+10.02%) compared to the untreated tomato plants. The sucrose and lycopene content were affected both by the microbial treatments and the growing season (greater values found in 2021 with respect to 2020). The year factor also significantly affected the metabolite content, except for tyrosine, essential (EAA) and branched-chain amino acids (BCAAs). Over the two years of the field trial, FID-consortium enhanced the content of proteins (+53.71%), alanine (+16.55%), aspartic acid (+31.13%), γ-aminobutyric acid (GABA) (+76.51%), glutamine (+55.17%), glycine (+28.13%), monoethanolamine (MEA) (+19.57%), total amino acids (TAA) (+33.55), EAA (+32.56%) and BCAAs (+45.10%) compared to the control. Our findings highlighted the valuable effect of the FID microbial inoculant in boosting several primary metabolites (proteins and amino acids) in the fruits of the processing tomato crop grown under southern Italian environmental conditions, although no effect on the yield and its components was appreciated.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Burato
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Alfonso Pentangelo
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
10
|
Mycorrhizal Effects on Growth and Expressions of Stress-Responsive Genes ( aquaporins and SOSs) of Tomato under Salt Stress. J Fungi (Basel) 2022; 8:jof8121305. [PMID: 36547638 PMCID: PMC9786897 DOI: 10.3390/jof8121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmentally friendly arbuscular mycorrhizal fungi (AMF) in the soil can alleviate host damage from abiotic stresses, but the underlying mechanisms are unclear. The objective of this study was to analyze the effects of an arbuscular mycorrhizal fungus, Paraglomus occultum, on plant growth, nitrogen balance index, and expressions of salt overly sensitive genes (SOSs), plasma membrane intrinsic protein genes (PIPs), and tonoplast intrinsic protein genes (TIPs) in leaves of tomato (Solanum lycopersicum L. var. Huapiqiu) seedlings grown in 0 and 150 mM NaCl stress. NaCl stress severely inhibited plant growth, but P. occultum inoculation significantly improved plant growth. NaCl stress also suppressed the chlorophyll index, accompanied by an increase in the flavonoid index, whereas inoculation with AMF significantly promoted the chlorophyll index as well as reduced the flavonoid index under NaCl conditions, thus leading to an increase in the nitrogen balance index in inoculated plants. NaCl stress regulated the expression of SlPIP1 and SlPIP2 genes in leaves, and five SlPIPs genes were up-regulated after P. occultum colonization under NaCl stress, along with the down-regulation of only SlPIP1;2. Both NaCl stress and P. occultum inoculation induced diverse expression patterns in SlTIPs, coupled with a greater number of up-regulated TIPs in inoculated versus uninoculated plants under NaCl stress. NaCl stress up-regulated SlSOS2 expressions of mycorrhizal and non-mycorrhizal plants, while P. occultum significantly up-regulated SlSOS1 expressions by 1.13- and 0.45-fold under non-NaCl and NaCl conditions, respectively. It was concluded that P. occultum inoculation enhanced the salt tolerance of the tomato, associated with the nutrient status and stress-responsive gene (aquaporins and SOS1) expressions.
Collapse
|
11
|
Li S, Chi S, Lin C, Cai C, Yang L, Peng K, Huang X, Liu J. Combination of biochar and AMF promotes phosphorus utilization by stimulating rhizosphere microbial co-occurrence networks and lipid metabolites of Phragmites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157339. [PMID: 35842155 DOI: 10.1016/j.scitotenv.2022.157339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Agricultural biochar and arbuscular mycorrhizal fungi were used to promote the growth of Phragmites in the structural damaged and nutritional imbalanced littoral zone soils. Wheat straw biochar played a significant role in improving soil porosity and supplementing available phosphorus to 79.20 ± 3.20 mg/kg, compared with CK at 17.50 ± 0.88 mg/kg. The addition of Diversispora versiformis improved the plant net photosynthetic rate reaching up to 25.66 ± 0.65 μmol·m-2·s-1, which was 36.60 % higher than CK. The combination of biochar and fungi contributed to the whole plant dry weight biomass of 32.30 % and 234.00 % higher than the single biochar or AMF amendment groups, respectively. Meanwhile, the analysis of microbial co-occurrence networks showed the most relevant networks node species were mainly Talaromyces, Chaetomiacea and Gemmatimonadetes etc. Root lipid metabolite of Glycerophospholines further proved that phosphorus utilization was also enhanced endogenously in the rhizosphere soil. These results indicate that the combination of biochar and arbuscular mycorrhizal fungi play synergic role in enhancing phosphorus utilization endogenously and exogenously.
Collapse
Affiliation(s)
- Shuangqiang Li
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Shanqing Chi
- Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou 350007, China
| | - Caiqiang Lin
- Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou 350007, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Liheng Yang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China.
| |
Collapse
|
12
|
Leonard W, Zhang P, Ying D, Fang Z. Surmounting the off-flavor challenge in plant-based foods. Crit Rev Food Sci Nutr 2022; 63:10585-10606. [PMID: 35603719 DOI: 10.1080/10408398.2022.2078275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plant-based food products have been receiving an astronomical amount of attention recently, and their demand will most likely soar in the future. However, their unpleasant, intrinsic flavor and odor are the major obstacles limiting consumer's acceptance. These off-flavors are often described as "green," "grassy," "beany," "fatty" and "bitter." This review highlights the presence and formation of common off-flavor volatiles (aldehydes, alcohols, ketones, pyrazines, furans) and nonvolatiles (phenolics, saponins, peptides, alkaloids) from a variety of plant-based foods, including legumes (e.g. lentil, soy, pea), fruits (e.g. apple, grape, watermelon) and vegetables (e.g. carrot, potato, radish). These compounds are formed through various pathways, including lipid oxidation, ethanol fermentation and Maillard reaction (and Strecker degradation). The effect of off-flavor compounds as received by the human taste receptors, along with its possible link of bioactivity (e.g. anti-inflammatory effect), are briefly discussed on a molecular level. Generation of off-flavor compounds in plants is markedly affected by the species, cultivar, geographical location, climate conditions, farming and harvest practices. The effects of genome editing (i.e. CRISPR-Cas9), various processing technologies, such as antioxidant supplementation, enzyme treatment, extrusion, fermentation, pressure application, and different storage and packaging conditions, have been increasingly studied in recent years to mitigate the formation of off-flavors in plant foods. The information presented in this review could be useful for agricultural practitioners, fruits and vegetables industry, and meat and dairy analogue manufacturers to improve the flavor properties of plant-based foods.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Authentication of tomato (Solanum lycopersicum L.) cultivars using discriminative models based on texture parameters of flesh and skin images. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Wang S, Jin N, Jin L, Xiao X, Hu L, Liu Z, Wu Y, Xie Y, Zhu W, Lyu J, Yu J. Response of Tomato Fruit Quality Depends on Period of LED Supplementary Light. Front Nutr 2022; 9:833723. [PMID: 35174200 PMCID: PMC8841748 DOI: 10.3389/fnut.2022.833723] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Light is an important environmental factor that regulates the activity of metabolism-related biochemical pathways during tomato maturation. Using LED to improve lighting conditions during the process of tomato growth and development is a feasible and efficient method to improve the quality of tomato fruit. In this study, red and blue LEDs were used to supplement light on “MicroTom” tomato plants for different periods of time in the morning and evening, and the differences between the primary and secondary metabolites and other nutrient metabolites in the tomato fruit were analyzed using liquid chromatography and liquid chromatography mass spectrometry and other methods. Supplementing light in the morning promoted the accumulation of vitamin C, organic acids, amino acids, carotenoids, phenolic acids, and other health-promoting substances in the tomato fruits. Supplementing light in the evening significantly increased the content of sugars, flavonoids, and aromatic substances in tomato fruits, whereas the promoting effect of LED on the accumulation of amino acids and carotenoids was lower in the evening than in the morning. Both morning and evening light supplementation reduced the mineral content of fruit. In conclusion, morning light supplementation improved the nutritional quality of tomato fruits, while evening light supplementation improved their flavor.
Collapse
Affiliation(s)
- Shuya Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Li Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yandong Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wen Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Jian Lyu
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Jihua Yu
| |
Collapse
|