1
|
Yang Y, Zhang S, Peng H, Chen G, Nie Q, Zhang X, Luo W. Effects of long-time and short-time heat stress on the meat quality of geese. Poult Sci 2024; 103:104112. [PMID: 39106699 PMCID: PMC11343063 DOI: 10.1016/j.psj.2024.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 08/09/2024] Open
Abstract
This investigation sought to reveal the effects of heat stress on the meat quality of geese. Wuzong geese were subjected to heat stress at 35°C for 25 d or 4 h to examine different heat stress time on meat quality. Short-time heat stress reduced muscle drip loss and meat color L* value while increasing pH value and meat color a* and b* values. Long-time heat stress decreased body weight and increased leg muscle pH value and meat color b* value. Amino acid profile of geese breast muscle revealed that both LHS and SHS can induce L-Cystine but reduced L-Cystathionine, which were positive correlated with cooking loss and meat color lightness, respectively. Lipidome analysis indicated that heat stress would alter the synthesis of unsaturated fatty acids, and the difference between LHS and SHS on lipids mainly focused on Hex1Cer and TG. Non-target metabolome analysis indicated effects of heat stress on Glycerolipid metabolism, Arachidonic acid metabolism, and Pyrimidine metabolism. Proteome analysis showed that heat stress mainly affects cellular respiration metabolism and immune response. These findings highlight the diverse effects of heat stress on meat quality, amino acid composition, lipidome, metabolome, and proteome in geese.
Collapse
Affiliation(s)
- Ying Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Haoqi Peng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Chen G, Qi L, Zhang S, Peng H, Lin Z, Zhang X, Nie Q, Luo W. Metabolomic, lipidomic, and proteomic profiles provide insights on meat quality differences between Shitou and Wuzong geese. Food Chem 2024; 438:137967. [PMID: 37979274 DOI: 10.1016/j.foodchem.2023.137967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A comprehensive comparison of metabolomic, lipidomic, and proteomic profiles was conducted between the breast and leg muscles of Shitou goose (STE) and Wuzhong goose (WZE), which exhibit significant variations in body size and growth rate, to evaluate their impact on meat quality. WZE had higher intramuscular fat content in their breast muscles, which were also chewier and had higher drip and cooking losses than STE. Metabolomic analysis revealed differential regulation of amino acid and purine metabolism between WZE and STE. Lipidomic analysis indicated a higher abundance of PE and PC lipid molecules in WZE. Integration of proteomic and metabolomic data highlighted purine metabolism and amino acid biosynthesis as the major distinguishing pathways between STE and WZE. The primary differential pathways between breast and leg muscles were associated with energy metabolism and fatty acid metabolism. This comprehensive analysis provides valuable insights into the distinct meat quality of STE and WZE.
Collapse
Affiliation(s)
- Genghua Chen
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shuai Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Haoqi Peng
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zetong Lin
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Dai Z, Feng M, Feng C, Zhu H, Chen Z, Guo B, Yan L. Effects of sex on meat quality traits, amino acid and fatty acid compositions, and plasma metabolome profiles in White King squabs. Poult Sci 2024; 103:103524. [PMID: 38377688 PMCID: PMC10891333 DOI: 10.1016/j.psj.2024.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
The objective of this study was to investigate the effects of sex on meat quality and the composition of amino and fatty acids in the breast muscles of White King pigeon squabs. Untargeted metabolomics was also conducted to distinguish the metabolic composition of plasma in different sexes. Compared with male squabs, female squabs had greater intramuscular fat (IMF) deposition and lower myofiber diameter and hydroxyproline content, leading to a lower shear force. Female squabs also had higher monounsaturated fatty acid and lower n-6 and n-3 polyunsaturated fatty acid proportions in the breast muscle, and had greater lipogenesis capacity via upregulation of PPARγ, FAS and LPL gene expression. Moreover, female squabs had lower inosine 5'-monophosphate, essential, free and sweet-tasting amino acid contents. Furthermore, Spearman's correlations between the differential plasma metabolites and key meat parameters were assessed, and putrescine, N-acetylglutamic acid, phophatidylcholine (18:0/P-16:0) and trimethylamine N-oxide were found to contribute to meat quality. In summary, the breast meat of male squabs may have better nutritional value than that of females, but it may inferior in terms of sensory properties, which can be attributed to the lower IMF content and higher shear force value. Our findings enhance our understanding of sex variation in squab meat quality, providing a basis for future research on pigeon breeding.
Collapse
Affiliation(s)
- Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology
| | - Mengwen Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology
| | - Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology
| | - Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology
| | - Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology.
| |
Collapse
|
4
|
Zhang K, Meng H, Du M, Du Y, Li X, Wang Y, Liu H. Quantitative Phosphoproteomics Analysis Reveals the Protective Mechanism of Chlorogenic Acid on Immunologically Stressed Broiler Meat Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5062-5072. [PMID: 38377574 DOI: 10.1021/acs.jafc.3c07304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Modern poultry production is stressful for the birds, and this stress is recognized as a major cause of inferior meat quality. Chlorogenic acid (CGA), a plant phenolic acid, has excellent antioxidant and anti-inflammatory properties. The antioxidant capacity and phosphoproteomics of immunologically stressed broiler breast muscle were assessed to elucidate the mechanism of the beneficial effects of CGA on meat quality. Dietary CGA decreased drip and cooking loss, postmortem pH and antioxidant capacity of breast muscle from stressed broilers, and increased MyHC-I mRNA levels. Quantitative phosphoproteomics revealed that CGA supplementation downregulated the phosphorylation of myofibrillar proteins, glycolytic enzymes, and endoplasmic reticulum proteins involved in homeostasis, which contributed to improving the meat quality of broilers. Moreover, 14 phosphorylation sites (e.g., P13538-Ser1236 and F1NN63-Ser117) in 13 phosphoproteins were identified as key regulators of processes related to broiler meat quality. Together, these findings provide novel regulatory targets and nutritional strategies for improving the stressed broiler meat quality.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yifan Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Cao Z, Xu M, Qi S, Xu X, Liu W, Liu L, Bao Q, Zhang Y, Xu Q, Zhao W, Chen G. Lipidomics reveals lipid changes in the intramuscular fat of geese at different growth stages. Poult Sci 2024; 103:103172. [PMID: 37984003 PMCID: PMC10694593 DOI: 10.1016/j.psj.2023.103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023] Open
Abstract
The quality (color, tenderness, juiciness, protein content, and fat content) of poultry meat is closely linked to age, with older birds typically exhibiting increased intramuscular fat (IMF) deposition. However, specific lipid metabolic pathways involved in IMF deposition remain unknown. To elucidate the mechanisms underlying lipid changes, we conducted a study using meat geese at 2 distinct growth stages (70 and 300 d). Our findings regarding the approximate composition of the meat revealed that as the geese aged 300 d, their meat acquired a chewier texture and displayed higher levels of IMF. Liquid chromatography-mass spectrometry (LC-MS) was employed for lipid profiling of the IMF. Using a lipid database, we identified 849 lipids in the pectoralis muscle of geese. Principal component analysis and orthogonal partial least squares discriminant analysis were used to distinguish between the 2 age groups and identify differential lipid metabolites. As expected, we observed significant changes in 107 lipids, including triglycerides, diglycerides, phosphatidylethanolamine, alkyl-glycerophosphoethanolamine, alkenyl-glycerophosphoethanolamine, phosphatidylcholine, phosphatidylinositol, lysophosphatidylserine, ceramide-AP, ceramide-AS, free fatty acids, cholesterol lipids, and N-acyl-lysophosphatidylethanolamine. Among these, the glyceride molecules exhibited the most pronounced changes and played a pivotal role in IMF deposition. Additionally, increased concentration of phospholipid molecules was observed in breast muscle at 70 d. Unsaturated fatty acids attached to lipid side chain sites enrich the nutritional value of goose meat. Notably, C16:0 and C18:0 were particularly abundant in the 70-day-old goose meat. Pathway analysis demonstrated that glycerophospholipid and glyceride metabolism were the pathways most significantly associated with lipid changes during goose growth, underscoring their crucial role in lipid metabolism in goose meat. In conclusion, this work provides an up-to-date study on the lipid composition and metabolic pathways of goose meat and may provide a theoretical basis for elucidating the nutritional value of goose meat at different growth stages.
Collapse
Affiliation(s)
- Zhi Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maodou Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shangzong Qi
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Linyu Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Bao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
6
|
Jia W, Wu L, Zhuang Z, Xu M, Lu Y, Wang Z, Bai H, Chen G, Chang G, Jiang Y. Research Note: Transcriptome analysis reveals differentially expressed genes regulated muscle development in Pekin ducks during dietary threonine deficiency. Poult Sci 2023; 102:103168. [PMID: 37918132 PMCID: PMC10641540 DOI: 10.1016/j.psj.2023.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
To investigate the underlying molecular mechanism of threonine (Thr) regulation on the development of breast muscle in Pekin ducks, 240 male Pekin ducks at 1 d of age were fed a Thr deficiency diet (Thr-D), Thr sufficiency diet (Thr-S), or Thr excess diet (Thr-E) for 21 d. The results showed that Thr-D reduced body weight (BW), average weight gain (ADG), and average feed intake (ADFI), and increased the feed/gain (F/G) in Pekin ducks (P < 0.05), and Thr-E did not affect BW, ADG, ADFI, or F/G (P > 0.05), compared with Thr-S. The diameter and cross-sectional area of the breast muscle fibers in the Thr-S group were larger than those in the Thr-D group (P < 0.05). RNA sequencing revealed 1,300 differential expressed genes (DEGs) between the Thr-D and Thr-S groups, of which 625 were upregulated and 675 were downregulated by Thr-D. KEGG analysis showed that the upregulated genes were enriched in mTOR, FoxO, Wnt, fat digestion and absorption, and other signaling pathways. The downregulated genes were enriched in the MAPK signaling, glycolysis/gluconeogenesis, adipocytokine signaling, and biosynthesis of unsaturated fatty acids signaling pathways. The genes of Wnt family member 3a (Wnt3a), myogenin, myozenin 2, and insulin like growth factor 2 mRNA binding protein were upregulated, and platelet derived growth factor subunit B, PDGF receptor beta and Wnt4 were downregulated by Thr deficiency, which involving in muscle development. Our findings indicated that Thr increased breast fiber size, perhaps because Thr affected the proliferation and differentiation of satellite cells in breast muscle of ducks after hatch. Our results provide novel insights into new understanding of the molecular mechanisms underlying breast muscle development in ducks subjected to dietary Thr.
Collapse
Affiliation(s)
- Wenqian Jia
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lei Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhong Zhuang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minghong Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yijia Lu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Wang Y, Li W, Zhang C, Li F, Yang H, Wang Z. Metabolomic comparison of meat quality and metabolites of geese breast muscle at different ages. Food Chem X 2023; 19:100775. [PMID: 37780242 PMCID: PMC10534087 DOI: 10.1016/j.fochx.2023.100775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023] Open
Abstract
The purpose of this study was to distinguish the effect of age on the meat quality and chemical composition of Yangzhou goose breast meat. Nontargeted metabolomics analysis (UHPLC-MS/MS) was used to distinguish the metabolic composition of goose meat at different ages, and Pearson's correlations between differential metabolites and key meat parameters were assessed. Compared with goslings, adult geese had lighter, redder and chewier meat (p < 0.05). Metabolite analysis revealed significant differences in nucleosides, organic acids, amino acids and sugars. Levels of IMP, xanthosine, pretyrosine and l-threonine were significantly higher in older meat (p < 0.05) and positively correlated with meat freshness indicators. However, pyruvic acid, l-cysteine and glucose 6-phosphate were up-regulated in gosling meat (p < 0.05), which were important flavor compounds. These results facilitate the further investigation of changes in goose meat composition and provide biomarkers for determining goose meat quality at different ages.
Collapse
Affiliation(s)
| | | | - Chi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Fushi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| |
Collapse
|
8
|
Pei MS, Liu HN, Wei TL, Guo DL. Proteome-Wide Identification of Non-histone Lysine Methylation during Grape Berry Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12140-12152. [PMID: 37503871 DOI: 10.1021/acs.jafc.3c03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
9
|
Yan X, Xu Y, Zhen Z, Li J, Zheng H, Li S, Hu Q, Ye P. Slaughter performance of the main goose breeds raised commercially in China and nutritional value of the meats of the goose breeds: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3748-3760. [PMID: 36178068 DOI: 10.1002/jsfa.12244] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 05/03/2023]
Abstract
A number of goose breeds are raised commercially in China. However, the data on the slaughter performance of the goose breeds and the nutritional value of their meats lack a thorough comparative analysis. In this systematic review, the slaughter performance of the goose breeds and nutritional value of their meats were comparatively analyzed to provide an overview of the characteristics of the goose breeds raised commercially in China. Fifteen goose breeds were selected from 27 research articles published up to January 2022 on the slaughter performance of the goose breeds raised commercially in China and their nutrient composition after literature searching, literature screening, variety selection, and data collation. The slaughter indexes of the goose breeds and the basic nutrient composition, amino acid composition, and fatty acid composition of the meats of the goose breeds were standardized using min-max normalization and compared. The results suggest that the slaughter indexes and nutritional indicators of the meats of Yangzhou white goose, Xupu goose, Landaise geese, and Sichuan white goose are more balanced than those of the meats of the other goose breeds. The results of this review can lay the foundation for optimizing the breeding methods of the commercially raised goose breeds and processing methods of the meats of the geese. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Yaguang Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
10
|
Huang C, Blecker C, Chen L, Xiang C, Zheng X, Wang Z, Zhang D. Integrating identification and targeted proteomics to discover the potential indicators of postmortem lamb meat quality. Meat Sci 2023; 199:109126. [PMID: 36736126 DOI: 10.1016/j.meatsci.2023.109126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The aim of this study was to identify the potential indicators of lamb meat quality by TMT and PRM-based proteomics combined with bioinformatic analysis. Lamb muscles were divided into three different meat quality groups (high, middle and low) according to tenderness (shear force, MFI value), colour (a* value, R630/580), and water-holding capacity (cooking loss, drip loss) at 24 h postmortem. The results showed that the abundance of phosphoglycerate kinase 1 (PGK1), β-enolase (ENO3), myosin-binding protein C (MYBPC1) and myosin regulatory light chain 2 (MYLPF) was significantly different in the three groups and could be used as potential indicators to characterize meat quality. Moreover, the postmortem processes of glycolysis, oxidative phosphorylation, and muscle contraction remarkably changed in different groups, and were the key biological pathways influencing meat quality. Overall, this study depicted the proteomic landscape of meat that furthers our understanding of the molecular mechanism of meat quality and provides a reference for developing non-destructive detection technology for meat quality.
Collapse
Affiliation(s)
- Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Can Xiang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
11
|
Bai Y, Hou C, Huang C, Fang F, Dong Y, Li X, Zhang D. Phosphorylation of Calpastatin Negatively Regulates the Activity of Calpain. Life (Basel) 2023; 13:life13030854. [PMID: 36984009 PMCID: PMC10056145 DOI: 10.3390/life13030854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tenderness is an important characteristic of meat quality. Calpastatin and calpain play important roles in meat tenderization. However, it is not clear how phosphorylation affects the regulation of calpastatin on μ-calpain and, consequently, meat tenderness. Calpastatin with high and low phosphorylation levels were obtained in vitro corresponding to the treatments by protein kinase A (PKA) and alkaline phosphatase. Then, calpain was incubated with calpastatin with different phosphorylation levels, and the effect of calpastatin on calpain activity under different phosphorylation levels was analyzed. The results showed that PKA promoted the phosphorylation of calpastatin, and a high phosphorylation level was maintained during incubation. The degradation rate of μ-calpain in AP group was higher than that in the other groups, meaning there was lower inhibition of calpastatin on calpain activity. The degradation of calpastatin was lower and its structure was more stable after phosphorylation. One more serine 133 site of calpastatin was identified in PKA group compared with the other groups. Phosphorylation at serine 133 of calpastatin enhanced its inhibition on calpain activity by maintaining its structural stability, thus inhibiting the tenderization of meat.
Collapse
Affiliation(s)
- Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Fei Fang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yu Dong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
12
|
Miao X, Zhao Y, Li H, Ren Y, Hu G, Yang J, Liu L, Li X. Phosphoproteomics Profile of Chicken Cecum in the Response to Salmonella enterica Serovar Enteritidis Inoculation. Animals (Basel) 2022; 13:ani13010078. [PMID: 36611688 PMCID: PMC9817708 DOI: 10.3390/ani13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a foodborne pathogen, which can cause great threats to human health through the consumption of contaminated poultry products. This research combines TMT labeling, HPLC and mass-spectrometry-based phosphoproteomics on cecum of the F1 cross of Guangxi Yao chicken and Jining Bairi chicken. The treated group was inoculated with 0.3 mL inoculum S. Enteritidis, and the control group was inoculated with 0.3 mL phosphate-buffered saline (PBS). A total of 338 differentially phosphorylated modification sites in 243 differentially phosphorylated proteins (DPPs) were chosen for downstream analyses. A total of 213 sites in 146 DPPs were up-regulated and 125 sites in 97 DPPs were down-regulated. Functional analysis was performed for DPPs based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the protein domain. The DPPs were mainly enriched in immune- and metabolic-related GO-BP (biological process) and KEGG pathways. We predicted and classified the subcellular structure and COG/KOG of DPPs. Furthermore, protein-protein interaction network analyses were performed by using multiple algorithms. We identified 71 motifs of the phosphorylated modification sites and selected 18 sites randomly to detect the expression level through parallel reaction monitoring (PRM). S. Enteritidis inoculation caused phosphorylation alteration in immune- and metabolic-related proteins. The invasion of S. Enteritidis may be actualized by inducing cecum cell apoptosis through the endoplasmic reticulum pathway, and chickens could resist the invasion of S. Enteritidis by affecting the function of ECM receptors. The findings herein provide a crucial theoretical foundation to understand the molecular mechanism and epigenetic regulation in response to S. Enteritidis inoculation in chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Ya’nan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Huilong Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yanru Ren
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.L.); (X.L.)
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.L.); (X.L.)
| |
Collapse
|
13
|
He Y, Tan X, Li H, Yan Z, Chen J, Zhao R, Irwin DM, Wu W, Zhang S, Li B. Phosphoproteomic analysis identifies differentially expressed phosphorylation sites that affect muscle fiber type in pigs. Front Nutr 2022; 9:1006739. [PMID: 36618708 PMCID: PMC9815177 DOI: 10.3389/fnut.2022.1006739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle of livestock is composed of both fast- and slow-twitch muscle fibers, which are key factors in their meat quality. However, the role of protein phosphorylation in muscle fiber type is not completely understood. Here, a fast-twitch (biceps femoris, BF) and slow-twitch (soleus, SOL) muscle tissue sample was collected from three male offspring of Duroc and Meishan pigs. We demonstrate that the meat quality of SOL muscle is significantly better than that of BF muscle. We further used phosphoproteomic profiling of BF and SOL muscles to identify differences between these muscle types. A total of 2,327 phosphorylation sites from 770 phosphoproteins were identified. Among these sites, 287 differentially expressed phosphorylation sites (DEPSs) were identified between BF and SOL. GO and KEGG enrichment analysis of proteins containing DEPSs showed that these phosphorylated proteins were enriched in the glycolytic process GO term and the AMPK signaling pathway. A protein-protein interaction (PPI) analysis reveals that these phosphorylated proteins interact with each other to regulate the transformation of muscle fiber type. These analyses reveal that protein phosphorylation modifications are involved in porcine skeletal muscle fiber type transformation. This study provides new insights into the molecular mechanisms by which protein phosphorylation regulates muscle fiber type transformation and meat quality in pigs.
Collapse
Affiliation(s)
- Yu He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaofan Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hongqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Zhiwei Yan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jing Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruixue Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuyi Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China,*Correspondence: Bojiang Li,
| |
Collapse
|
14
|
Weng K, Huo W, Song L, Cao Z, Zhang Y, Zhang Y, Chen G, Xu Q. Effect of marketable age on nutritive profile of goose meat based on widely targeted metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Rodríguez-Vázquez R, Mouzo D, Zapata C. Phosphoproteome Analysis Using Two-Dimensional Electrophoresis Coupled with Chemical Dephosphorylation. Foods 2022; 11:3119. [PMID: 36230195 PMCID: PMC9562008 DOI: 10.3390/foods11193119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/22/2022] Open
Abstract
Protein phosphorylation is a reversible post-translational modification (PTM) with major regulatory roles in many cellular processes. However, the analysis of phosphoproteins remains the most challenging barrier in the prevailing proteome research. Recent technological advances in two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) have enabled the identification, characterization, and quantification of protein phosphorylation on a global scale. Most research on phosphoproteins with 2-DE has been conducted using phosphostains. Nevertheless, low-abundant and low-phosphorylated phosphoproteins are not necessarily detected using phosphostains and/or MS. In this study, we report a comparative analysis of 2-DE phosphoproteome profiles using Pro-Q Diamond phosphoprotein stain (Pro-Q DPS) and chemical dephosphorylation of proteins with HF-P from longissimus thoracis (LT) muscle samples of the Rubia Gallega cattle breed. We found statistically significant differences in the number of identified phosphoproteins between methods. More specifically, we found a three-fold increase in phosphoprotein detection with the HF-P method. Unlike Pro-Q DPS, phosphoprotein spots with low volume and phosphorylation rate were identified by HF-P technique. This is the first approach to assess meat phosphoproteome maps using HF-P at a global scale. The results open a new window for 2-DE gel-based phosphoproteome analysis.
Collapse
Affiliation(s)
- Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | | | | |
Collapse
|
16
|
The Investigation of Protein Profile and Meat Quality in Bovine Longissimus thoracic Frozen under Different Temperatures by Data-Independent Acquisition (DIA) Strategy. Foods 2022; 11:foods11121791. [PMID: 35741989 PMCID: PMC9222788 DOI: 10.3390/foods11121791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The influence of freezing on the protein profile and quality traits in bovine Longissimus thoracic (LT) muscle was investigated by the data-independent acquisition (DIA) technique. Compared to fresh meat, a total of 262 proteins were identified as differential abundance proteins (DAPs) in four frozen groups (−12 °C, −18 °C, −38 °C, and −80 °C). According to the bioinformatics analysis, most of the DAPs in the significant Go terms and the KEGG pathway were structure proteins and enzymes. Proteome changes in the frozen bovine muscle at −12 °C and −18 °C were more significant than those at −38 °C and −80 °C. The result was consistent with the deterioration trend of the meat quality. The correlation analysis revealed that 17 proteins were correlated closely with the color, shear force, thawing loss, and cooking loss of the frozen meat, which could be used as putative biomarkers for frozen meat quality. MYO18A and ME3 are newly discovered proteins that are associated with frozen beef quality. In addition, CTTN and SERPINB6 were identified in frozen groups, which exhibited a significant inverse correlation with thawing loss (p < 0.01). These findings reveal the quality changes induced by freezing at the protein molecular level and provide new insights into the control of quality deterioration.
Collapse
|
17
|
Du M, Li X, Zhang D, Li Z, Hou C, Ren C, Bai Y. Phosphorylation plays positive roles in regulating the inhibitory ability of calpastatin to calpain. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manting Du
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| | - Xin Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Dequan Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Zheng Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chengli Hou
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chi Ren
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Yanhong Bai
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| |
Collapse
|