1
|
Kafle B, Wubshet SG, Hestnes Bakke KA, Böcker U, O'Farrell M, Dankel K, Måge I, Tschudi J, Tzimorotas D, Afseth NK, Dunker T. A portable dry film FTIR instrument for industrial food and bioprocess applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4310-4321. [PMID: 38888190 DOI: 10.1039/d4ay00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The main objective of this study was to design, build, and test a compact, multi-well, portable dry film FTIR system for industrial food and bioprocess applications. The system features dry film sampling on a circular rotating disc comprising 31 wells, a design that was chosen to simplify potential automation and robotic sample handling at a later stage. Calibration models for average molecular weight (AMW, 200 samples) and collagen content (68 samples) were developed from the measurements of industrially produced protein hydrolysate samples in a controlled laboratory environment. Similarly, calibration models for the prediction of lactate content in samples from cultivation media (59 samples) were also developed. The portable dry film FTIR system showed reliable model characteristics which were benchmarked with a benchtop FTIR system. Subsequently, the portable dry film FTIR system was deployed in a bioprocessing plant, and protein hydrolysate samples were measured at-line in an industrial environment. This industrial testing involved building a calibration model for predicting AMW using 60 protein hydrolysate samples measured at-line using the portable dry film FTIR system and subsequent model validation using a test set of 26 samples. The industrial calibration in terms of coefficient of determination (R2 = 0.94), root mean square of cross-validation (RMSECV = 194 g mol-1), and root mean square of prediction (RMSEP = 162 g mol-1) demonstrated low prediction errors as compared to benchtop FTIR measurements, with no statistical difference between the calibration models of the two FTIR systems. This is to the authors' knowledge the first study for developing and employing a portable dry film FTIR system in the enzymatic protein hydrolysis industry for successful at-line measurements of protein hydrolysate samples. The study therefore suggests that the portable dry film FTIR instrument has huge potential for in/at-line applications in the food and bioprocessing industries.
Collapse
Affiliation(s)
- Bijay Kafle
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), P. O. Box 5003, Ås, N-1432, Norway
| | - Sileshi Gizachew Wubshet
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
| | | | - Ulrike Böcker
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
| | | | - Katinka Dankel
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
| | - Ingrid Måge
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
| | - Jon Tschudi
- SINTEF, P. O. Box 124 Blindern, Oslo, N-0314, Norway
| | - Dimitrios Tzimorotas
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
| | - Nils Kristian Afseth
- Norwegian Institute of Food, Fisheries and Aquaculture Research (NOFIMA), P. O. Box 210, Ås, N-1431, Norway.
| | - Tim Dunker
- SINTEF, P. O. Box 124 Blindern, Oslo, N-0314, Norway
| |
Collapse
|
2
|
Samborska K, Budziak-Wieczorek I, Matwijczuk A, Witrowa-Rajchert D, Gagoś M, Gładyszewska B, Karcz D, Rybak K, Jaskulski M, Barańska A, Jedlińska A. Powdered plant beverages obtained by spray-drying without carrier addition-physicochemical and chemometric studies. Sci Rep 2024; 14:4488. [PMID: 38396043 PMCID: PMC10891148 DOI: 10.1038/s41598-024-54978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 02/25/2024] Open
Abstract
Plant-based beverages (PBs) are currently gaining interest among consumers who are seeking alternative sustainable options to traditional dairy drinks. The study aimed to obtain powdered plant beverages without the addition of carriers by spray drying method to implement them in the future as an alternative to the liquid form of dairy drinks. Some of the most well-known commercial beverages sources like soy, almond, rice and oat were analyzed in this work. The effect of different treatments (concentration, addition of oat fiber) and two approaches od spray drying (conventional high temperature spray drying-SD, and dehumidified air spray drying at low temperature-DASD) were presented. Moreover, moisture content, water activity, particle morphology and size of obtained powders were analyzed. It was possible to obtain PBs without the addition of carriers, although the drying yield of four basic beverages was low (16.1-37.4%). The treatments and change in spray drying approach enhanced the drying yield, especially for the concentrated beverage dried using DASD (59.2%). Additionally, Fourier Transform Infrared (FTIR) spectroscopy was applied to evaluate the differences in chemical composition of powdered PBs. FTIR analysis revealed differences in the range of the absorption frequency of amide I, amide II (1700-1500 cm-1) and carbohydrate region (1200-900 cm-1). Principal component analysis (PCA) was carried out to study the relationship between spray dried plant beverages samples based on the fingerprint region of FTIR spectra, as well as the physical characteristics. Additionally, hierarchical cluster analysis (HCA) was employed to explore the clustering of the powders.
Collapse
Affiliation(s)
- Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Iwona Budziak-Wieczorek
- Department of Chemistry, Faculty of Life Sciences and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033, Lublin, Poland.
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Mariusz Gagoś
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Bożena Gładyszewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics, Krakow University of Technology, 31-155, Krakow, Poland
- ECOTECH-COMPLEX-Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033, Lublin, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Maciej Jaskulski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005, Łódź, Poland
| | - Alicja Barańska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Aleksandra Jedlińska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|