1
|
Jiang Z, Feng J, Dai Y, Yu W, Bai S, Bai C, Tu Z, Guo P, Liao T, Qiu L. Preparation of a biodegradable packaging film by konjac glucomannan/sodium alginate reinforced with nitrogen-doped carbon quantum dots from crayfish shell for crayfish meat preservation. Int J Biol Macromol 2025; 297:139596. [PMID: 39800018 DOI: 10.1016/j.ijbiomac.2025.139596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The development of biomass material is an important approach to alleviating the excessive using of plastic packaging, by which the product could be more environmentally friendly and lower toxicity. In this study, we developed a biodegradable photodynamic antibacterial food packaging film using nitrogen-doped carbon quantum dots (N-CQDs) synthesized from crayfish shells, combined with konjac glucomannan (KGM) and sodium alginate (SA). Casting method was used to prepare the composite film and results indicated that incorporation of N-CQDs significantly enhanced the mechanical and barrier properties of the film by reducing the number of micropores. The N-CQDs endowed the film with strong antioxidant activity and UV resistance. The DPPH scavenging rate of the composite film reached 77.92 %, while the transmittance of ultraviolet (300 nm) was reduced to 16.97 %. Furthermore, under blue light irradiation, the film exhibited excellent photodynamic antibacterial effects against Shewanella putrefaciens and Staphylococcus aureus, achieving inhibition rates of 99.2 % and 98.99 %, respectively. The film solution demonstrated no cytotoxicity, and the composite film preserved crayfish meat for up to 8 days at 4 °C. Furthermore, the film almost completely degrading in soil within 14 days. These findings suggest that the KGM/SA/N-CQD film is a promising degradable antimicrobial material for food packaging applications.
Collapse
Affiliation(s)
- Ziwei Jiang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 4300731, China
| | - Jundong Feng
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Yaodong Dai
- Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Wei Yu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shunjie Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Chan Bai
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Ziyi Tu
- Hubei Crawfish Industrial Tech Ltd, Qianjiang 433100, China
| | - Peng Guo
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China
| | - Liang Qiu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China; Department of Materials Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
| |
Collapse
|
2
|
Raveena, Kumari P. Nanocellulose@gallic Acid-Based MOFs: A Novel Material for Ecofriendly Food Packaging. ACS OMEGA 2024; 9:35654-35665. [PMID: 39184514 PMCID: PMC11340005 DOI: 10.1021/acsomega.4c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
The development of an effective food packaging material is essential for safeguarding against infections and preventing chemical, physical, and biological changes during food storage and transportation. In the present study, we successfully synthesized an innovative food packaging material by combining chitosan (CH), nanocellulose (NC), and a gallic acid-based metal-organic framework (MOF). The CH films were prepared using different concentrations of NC (5 and 10%) and MOFs (1.5, 2.5, and 5%). Various properties of prepared films, including water solubility (WS), moisture content (MC), swelling degree, oxygen permeability, water vapor permeability (WVP), mechanical property, color analysis, and light transmittance, were studied. The chitosan film with a 5% NC and 1.5% MOF (CH-5% NC-1.5% MOF) exhibited the least water solubility, moisture content, and water vapor permeability, indicating the overall stability of the film. Additionally, this film demonstrated low oxygen permeability, as indicated by a peroxide value of 18.911 ± 4.009, ensuring the effective preservation of packaged contents. Notably, this synthesized film exhibited high antioxidant activity, resulting in an extended duration of 52 days. This antioxidant activity was further validated by the preservation of apple slices for 9 days in a CH-5% NC-1.5% MOF film. The findings of the study suggest that the developed films can provide a promising and environmentally friendly solution for active food packaging.
Collapse
Affiliation(s)
- Raveena
- Department
of Chemistry, University of Delhi, New Delhi 110007, India
- Bioorganic
Material Research Laboratory, Department of Chemistry, Deshbandhu
College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Pratibha Kumari
- Bioorganic
Material Research Laboratory, Department of Chemistry, Deshbandhu
College, University of Delhi, Kalkaji, New Delhi 110019, India
| |
Collapse
|
3
|
Liu Y, Tong F, Xu Y, Hu Y, Liu W, Yang Z, Yu Z, Xiong G, Zhou Y, Xiao Y. Development of antioxidant and smart NH 3 -sensing packaging film by incorporating bilirubin into κ-carrageenan matrix. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7030-7039. [PMID: 37337853 DOI: 10.1002/jsfa.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Active and smart food packaging based on natural polymers and pH-sensitive dyes as indicators has attracted widespread attention. In the present study, an antioxidant and amine-response color indicator film was developed by incorporating bilirubin (BIL) into the κ-carrageenan (Carr) matrix. RESULTS It was found that the introduction of BIL had no effect on the crystal/chemical structure, water sensitivity and mechanical performance of the Carr-based films. However, the barrier properties to light and the thermal stability were significantly improved after the addition BIL. The Carr/BIL composite films exhibited excellent 1,1-diphenyl-2-picryl-hydrazyl (i.e. DPPH)/2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (i.e. ABTS) free radical scavenging abilities and color responsiveness to different concentrations of ammonia. The application assay reflected that the Carr/BIL0.0075 film was effective in delaying the oxidative deterioration of shrimp during storage and realizing the color response of its freshness through the change of b* value. CONCLUSION Active and smart packaging films were successfully prepared by incorporating different contents of BIL into the Carr matrix. The present study helps to further encourage the design and development of a multi-functional packaging material. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Guoyuan Xiong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Dirpan A, Ainani AF, Djalal M. A bibliometrics visualization analysis of active packaging system for food packaging. Heliyon 2023; 9:e18457. [PMID: 37520944 PMCID: PMC10374920 DOI: 10.1016/j.heliyon.2023.e18457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
This bibliometric study includes publications on the use of active packaging in food packaging from 2000 to 2021. The number of research related to this study tends to increase annually with an annual growth rate of 23.76%, totaling 857 articles. In this study it was found that the most influential countries in the field of Active Packaging are Spain, China, and Brazil. Moreover, the International Journal of Biological Macromolecules and Nerín are the most prolific journal and author in scientific publications, respectively. Active packaging, food packaging, and antimicrobial are often used based on the total link strength out of the 1,775 keywords. The keyword analysis based on time found new terms that are being studied by many researchers, namely, bioplastics as environmentally friendly packaging, based on polysaccharides and nanoparticles, which have the potential to be developed or collaborated for breakthroughs. Therefore, the use of active packaging shows a promising trend for the packaging industry in the future.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar, Indonesia
| | - Andi Fadiah Ainani
- Research Group for Post-Harvest Technology and Biotechnology, Makassar 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
5
|
An Active Bio-Based Food Packaging Material of ZnO@Plant Polyphenols/Cellulose/Polyvinyl Alcohol: DESIGN, Characterization and Application. Int J Mol Sci 2023; 24:ijms24021577. [PMID: 36675089 PMCID: PMC9865695 DOI: 10.3390/ijms24021577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Active packaging materials protect food from deterioration and extend its shelf life. In the quest to design intriguing packaging materials, biocomposite ZnO/plant polyphenols/cellulose/polyvinyl alcohol (ZnPCP) was prepared via simple hydrothermal and casting methods. The structure and morphology of the composite were fully analyzed using XRD, FTIR, SEM and XPS. The ZnO particles, plant polyphenols (PPL) and cellulose were found to be dispersed in PVA. All of these components share their unique functions with the composite's properties. This study shows that PPL in the composite not only improves the ZnO dispersivity in PVA as a crosslinker, but also enhances the water barrier of PVA. The ZnO, PPL and cellulose work together, enabling the biocomposite to perform as a good food packaging material with only a 1% dosage of the three components in PVA. The light shielding investigation showed that ZnPCP-10 can block almost 100% of both UV and visible light. The antibacterial activities were evaluated by Gram-negative Escherichia coli (E. coli) and Gram-positive staphylococcus aureus (S. aureus), with 4.4 and 6.3 mm inhibition zones, respectively, being achieved by ZnPCP-10. The enhanced performance and easy degradation enables the biocomposite ZnPCP to be a prospect material in the packaging industry.
Collapse
|
6
|
Duan A, Yang J, Wu L, Wang T, Liu Q, Liu Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int J Biol Macromol 2022; 220:147-158. [PMID: 35963358 DOI: 10.1016/j.ijbiomac.2022.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 01/20/2023]
Abstract
Raspberry anthocyanin (RA) from Rubus idaeus L. (Rosaceae) and curcumin (Cur) from Curcuma longa L. (Zingiberaceae) can effectively improve the physicochemical properties of composite films, and as bioactive pigment components, they can impart pH-responsive properties to the film. In this study, RA and Cur were added to chitosan/starch/gelatin composite film (CSG) to prepare CSG-RA, CSG-Cur, CSG-RA/Cur82 and CSG-RA/Cur73 color films by solution casting method. The color films could change color under different pH conditions and had higher antioxidant activities using ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The results from fourier transform infrared spectroscopy and scanning electron microscopy showed that RA and Cur were well dispersed in the CSG matrix and improved the structure of the composite films. The hydrophobic Cur increased the tensile strength from 6 Mpa (CSG) to 14 Mpa (CSG-Cur), but reduced the elongation at break from 55 % (CSG) to 40 % (CSG-Cur). These color films had a good fresh-keeping effect and freshness monitoring, in particular, CSG-RA/Cur73, had the better opacity, water solubility, thickness, moisture content and water vapor permeability than the other films. Briefly, binary pigment films had the potential to become a pH-sensitive indicator/packing film.
Collapse
Affiliation(s)
- Anbang Duan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China; Shanxi Jingxi Biotechnology Co., Ltd, Taiyuan, Shanxi, 030051, China.
| | - Liyang Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Tao Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Qingye Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yongping Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| |
Collapse
|
7
|
Nie J, Wu Z, Pang B, Guo Y, Li S, Pan Q. Fabrication of ZnO@Plant Polyphenols/Cellulose as Active Food Packaging and Its Enhanced Antibacterial Activity. Int J Mol Sci 2022; 23:ijms23095218. [PMID: 35563609 PMCID: PMC9104473 DOI: 10.3390/ijms23095218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the efficient use of bioresources and bioproducts, plant polyphenol (PPL) was extracted from larch bark and further applied to prepare ZnO@PPL/Cel with cellulose to examine its potential as an active package material. The structure and morphology were fully characterized by XRD, SEM, FTIR, XPS and Raman spectra. It was found that PPL is able to cover ZnO and form a coating layer. In addition, PPL cross-links with cellulose and makes ZnO distribute evenly on the cellulose fibers. Coating with PPL creates a pinecone-like morphology in ZnO, which is constructed by subunits of 50 nm ZnO slices. The interactions among ZnO, PPL and cellulose have been attributed to hydrogen bonding, which plays an important role in guiding the formation of composites. The antibacterial properties against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were tested by the inhibition zone method. Our composite ZnO@PPL/Cel has superior antibacterial activity compared to ZnO/Cel. The antibacterial mechanism has also been elaborated on. The low cost, simple preparation method and good performance of ZnO@PPL/Cel suggest the potential for it to be applied as active food packaging.
Collapse
Affiliation(s)
- Jingheng Nie
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Ziyang Wu
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Bo Pang
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Yuanru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
- Correspondence: (Y.G.); (Q.P.)
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; (J.N.); (Z.W.); (B.P.); (S.L.)
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
- Correspondence: (Y.G.); (Q.P.)
| |
Collapse
|