1
|
Feng W, Zhao L, Hao C, Yuan L, Liu L, Yang X, Bai Y, Feng F. Ultra-stable room temperature phosphorescence CDs-based composite materials for anti-counterfeiting application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126106. [PMID: 40139143 DOI: 10.1016/j.saa.2025.126106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Counterfeit and shoddy products exist widely in our daily life. Effective anti-counterfeiting means have become an issue with increasing concern. Herein, we proposed a new strategy for dispersing N, S-CDs into melamine phosphate (MP) to prepare N, S-CDs@MP composite. The co-doping of carbon dots with heteroatoms (N and S atoms) in conjunction with matrix protection synergistically enhanced the emission of long-lived room temperature phosphorescence (RTP). The obtained N, S-CDs@MP composite exhibited green RTP with phosphorescence quantum yield of 9.27 % and lifetime of 489 ms. More importantly, even in extreme conditions, the RTP of N, S-CDs@MP in the dispersion still persisted. The excellent RTP properties and good stability made N, S-CDs@MP a promising material for advanced anti-counterfeiting applications. This study afforded a new RTP material which could be easily prepared and used for information encryption and graphic anti-counterfeiting.
Collapse
Affiliation(s)
- Wenli Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Chenxia Hao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Lin Yuan
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Lizhen Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Xiaoming Yang
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China; School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, PR China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
2
|
Anoushka, Rani M, Shanker U. Rapid microwave assisted synthesis of N-doped CQDs for highly selective 'turn-off' sensing of Bismuth(III) ions in wastewater. Anal Chim Acta 2025; 1351:343904. [PMID: 40187881 DOI: 10.1016/j.aca.2025.343904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
The growing utilization of bismuth across diverse industries and pharmaceuticals has raised concerns about its environmental accumulation and the potential for neurotoxic and nephrotoxic effects in humans. Currently available techniques for its detection are often complex and costly, making CQDs an appealing alternative due to their low toxicity, cost-effectiveness, and ease of synthesis. Herein, a novel, environmentally sustainable one-pot microwave-assisted method for the synthesis of nitrogen-doped carbon quantum dots (N-CQDs) has been reported for the selective and sensitive detection of bismuth ions (Bi3+). The synthesized N-CQDs, with an impressive quantum yield of 47.5 %, exhibited remarkable stability and were applied as fluorescent sensors for detecting Bi3+ ions, achieving highly selective detection through fluorescence quenching. The detection limit was calculated to be 0.365 μM within a linear concentration range of 0.95-61.5 μM, with the quenching mechanism identified as dynamic quenching via a photoinduced electron transfer (PET) process. The practical applicability of this sensing platform was demonstrated through the analysis of various real-world samples, including tap water, industrial wastewater and agricultural runoff, with recovery rates ranging from 98.7 % to 101.6 %. The applications of these N-CQDs as fluorescent ink and in anti-counterfeiting were demonstrated. Further, the N-CQDs were combined with an RGB analysis tool to detect Bi3+. This method-notable for its simplicity, cost-efficiency, and scalability-offers a sustainable and effective approach for detecting Bi3+ ions in various environmental contexts, presenting a significant advancement in the field of metal ion sensing.
Collapse
Affiliation(s)
- Anoushka
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India
| | - Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144008, India.
| |
Collapse
|
3
|
Chen M, An L, Zhang L, Xie X, Wang K, Niu T, Ni T, Zhao Q, Liu D. Ultra-thin Nb 2O 5 nanosheets construct 3D cross-linked architecture: Unraveling new coccine degradation pathways and toxicity changes. ENVIRONMENTAL RESEARCH 2025; 277:121571. [PMID: 40203982 DOI: 10.1016/j.envres.2025.121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025]
Abstract
Photocatalytic technology offers a promising approach to address environmental and health challenges posed by the food colorant new coccine (NC). Nb2O5 is a notable candidate due to its stability and environmental compatibility, but faces limitations such as limited active sites and rapid charge carrier recombination. In the present study, we report a novel Nb2O5 catalyst featuring a three-dimensional (3D) cross-linked architecture constructed from ultra-thin nanosheets, with a catalyst thickness of less than 2 nm. This innovative structure offers an eminent superficial surface area combined with a substantial abundance of active sites, making it an efficient photocatalyst for the degradation of NC. The Nb2O5 3D catalyst demonstrated a remarkable degradation rate of 90.1 % for NC within just 30 min, accompanied by a rate constant of 73.5 × 10-3 min-1. This performance significantly surpasses that of three alternative Nb2O5 catalysts with varying morphologies (nanorods, nanoparticles, and nanospheres), which show rate constants more than seven times lower. Furthermore, we explore the degradation pathways associated with NC and provide a thorough examination of the toxicity changes occurring in its by-products. This work presents a promising framework for the development of advanced catalysts capable of effectively degrading NC, thereby contributing to the advancement of environmentally sustainable practices in the management of food colorants.
Collapse
Affiliation(s)
- Minghui Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lei An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Linxiu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaozhou Xie
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Kaiwei Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianqi Niu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianjun Ni
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Qian Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dong Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Liu L, Chen M, Zhao T, Yuan L, Mi Z, Bai Y, Fei P, Liu Z, Li C, Wang L, Feng F. Ratiometric fluorescence and smartphone-assisted sensing platform based on dual-emission carbon dots for brilliant blue detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124782. [PMID: 38991616 DOI: 10.1016/j.saa.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, an innovative ratiometric fluorescence and smartphone-assisted visual sensing platform based on blue-yellow dual-emission carbon dots (BY-CDs) was constructed for the first time to determine brilliant blue. The BY-CDs was synthesized via a facile one-step hydrothermal process involving propyl gallate and o-phenylenediamine. The synthesized BY-CDs exhibit favorable water solubility and exceptional fluorescence stability. Under excitation at 370 nm, BY-CDs show two distinguishable fluorescence emission bands (458 and 558 nm). Upon addition of brilliant blue, the fluorescence intensity at 558 nm exhibited a significant quenching effect attributed to fluorescence resonance energy transfer (FRET), while the fluorescence intensity at 458 nm was basically unchanged. The prepared BY-CDs can effectively serve as a ratiometric nanosensor for determining brilliant blue with the ratio of fluorescence intensities at 458 and 558 nm (F458/F558) as response signal. In addition, the developed ratiometric fluorescence sensor exhibits a noticeable alteration in color from yellow to green under UV light with a wavelength of 365 nm upon addition of varying concentrations of brilliant blue, which provides the possibility of visual detection of brilliant blue by a smartphone application. Finally, the BY-CDs based dual-mode sensing platform successfully detected brilliant blue in actual food samples and achieved a desirable recovery rate. This study highlights the merits of fast, convenient, economical, real-time, visual, high accuracy, excellent precision, good selectivity and high sensitivity for brilliant blue detection, and paves new paths for the monitoring of brilliant blue in real samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Ting Zhao
- Shanxi Datong University, Datong 037009, PR China
| | - Lin Yuan
- Shanxi Normal University, Taiyuan 030032, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Yunfeng Bai
- Shanxi Datong University, Datong 037009, PR China
| | - Peng Fei
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Caiqing Li
- Shanxi Datong University, Datong 037009, PR China
| | - Ligang Wang
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China; Shanxi Normal University, Taiyuan 030032, PR China.
| |
Collapse
|
5
|
Hu H, Xing H, Zhang Y, Liu X, Gao S, Wang L, Li T, Zhang T, Chen D. Centrifugated lateral flow assay strips based on dual-emission carbon dots modified with europium ions for ratiometric determination and on-site discrimination of tetracyclines in environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175478. [PMID: 39151611 DOI: 10.1016/j.scitotenv.2024.175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Due to the serious detrimental impact on human health, antibiotic pollution particularly tetracyclines residues has become a serious problem. Herein, a multiple response fluorescent probe consisted of dual-emission carbon dots and Eu3+ (D-CDs@Eu3+) is designed for the determination and discrimination of tetracyclines (TCs). Specifically, the carboxyl and amidogen group of dual-emission carbon dots (D-CDs) can coordinate with Eu3+ to form the D-CDs@Eu3+. Upon adding TCs, the fluorescence intensities of D-CDs at 405 nm and 495 nm are quenched due to inner filter effect (IFE) and the localization of fluorescence resonance energy transfer (L-FRET) between the D-CDs@Eu3+ and TC. Simultaneously, the D-CDs@Eu3+ may chelate with TCs to enhance the occurrence of antenna effect, while the characteristic peaks of Eu3+ at 590 nm and 615 nm are enhanced. On these bases, the TCs detection is achieved with low detection limits from 46.7 to 72.0 nM. Additionally, through the distinct efficiencies of L-FRET, the discrimination of TCs is achieved. Moreover, a novel centrifugated lateral flow assay strips (CLFASs) device is developed by integrating the D-CDs@Eu3+, lateral flow assay strips and smartphone using RGB variations for TCs detection, achieving remarkable recoveries (98.6-103.7 %) in real samples. Therefore, this CLFASs device provides a reliable approach for the TCs detection, demonstrating potential applications.
Collapse
Affiliation(s)
- Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Yihao Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Xinru Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Sineng Gao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Linfan Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ting Zhang
- Department of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, PR China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
6
|
Zeng H, Zhang M, Peng H, He H, Feng J, He H. Biomass Carbon Dots as Fluorescent Probes for Fast and Highly Selective Detection of Fe 3 + in Water Media. J Fluoresc 2024:10.1007/s10895-024-03995-0. [PMID: 39425837 DOI: 10.1007/s10895-024-03995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
In this study, a novel fluorescent probe for the rapid and highly selective detection of Fe3 + based on biomass carbon dots (b-CDs) was developed. The b-CDs were obtained via one-step hydrothermal synthesis by utilizing laurel fallen leaves. And the as-synthesized b-CDs were applied for sensing Fe3+ based on fluorescence (FL) quenching effect both in water and phosphate buffer solution (PBS) with a wide linear range from 1 µM to 300 µM, the detection limits (LODs) respectively to be 0.34 µM in water and 0.48 µM in PBS solution. The FL intensity of b-CDs was quenched fleetly within 1 min after adding Fe3+. The sensing mechanism of the b-CDs + Fe3+ system can be attributed to the internal filtration effect (IFE) mechanism and the electron transfer (ET) between b-CDs and Fe3+ in water, and only the IFE mechanism in PBS solution based on multiple experimental evidences. Moreover, the as-proposed probe was successfully adopted for monitoring Fe3+ in lake water and tap water samples. This research shows some merits of economic, simplicity, green, high selectivity, and quick response for Fe3+ determination, and provides an approach for the water quality monitoring of Fe3+ and the effective utilization of waste biological materials.
Collapse
Affiliation(s)
- Hongyan Zeng
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, PR China.
| | - Meiyan Zhang
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, PR China
| | - Huan Peng
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, PR China
| | - Hongmei He
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, PR China
| | - Jinrong Feng
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, PR China
| | - Huanyu He
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, PR China
| |
Collapse
|
7
|
Alam R, Naznin M, Ardiati FC, Solihat NN, Anita SH, Purnomo D, Yanto DHY, Kim S. Targeted and non-targeted identification of dye and chemical contaminants in Loji River, Indonesia using FT-ICR-MS. CHEMOSPHERE 2024; 365:143324. [PMID: 39278327 DOI: 10.1016/j.chemosphere.2024.143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
This study utilized liquid chromatography (LC) alongside Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to explore the dyes and chemical contaminants in Loji River, Indonesia. We tentatively identified a total of 655 contaminants at various confidence level, subsequently classifying them into 22 distinct categories. Of the 54 dyes we detected, 12 corresponded with entries in our specialized in-house database. These 12 dyes were further confirmed by reference standards, matching both retention time (RT) and MS/MS spectra. LC-FT-ICR MS data showed that dyes from printing batik and textile industries are key contributors to river pollution. Particularly noteworthy were two sample locations that displayed substantial contamination, predominantly from azoic and reactive dyes. Additionally, pharmaceuticals were identified as one of the most frequently occurring contaminants, underscoring the inadequacies in the area's sewage management. To corroborate these findings, we conducted physicochemical, phytotoxicity, and acute toxicity tests, all of which verified the harmful effects of the Loji River's water on both the local flora and human populations. Notably, water samples that tested positive for dye contamination exhibited elevated toxicity levels. To the best of our knowledge, this study is pioneering in its molecular-level investigation of dye contamination in Southeast Asian rivers. Our results accentuate the pressing need for both targeted and non-targeted screening methods to identify contaminants in the surface waters of developing nations.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Sita Heris Anita
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Deni Purnomo
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Chaudhari SS, Patil PO, Bari SB, Khan ZG. A comprehensive exploration of tartrazine detection in food products: Leveraging fluorescence nanomaterials and electrochemical sensors: Recent progress and future trends. Food Chem 2024; 433:137425. [PMID: 37690141 DOI: 10.1016/j.foodchem.2023.137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Azo dyes are widely used as food coloring agents because of their affordability and stability. Examples include brilliant blue, carmoisine, sunset yellow, allura red, and tartrazine (Tar), etc. Notably, Tar is often utilized in hazardous food goods. They are frequently flavoured and combined with food items, raising the likelihood and danger of exposure. Therefore, detecting Tar in food is crucial to prevent health risks. Fluorescence nanomaterials and electrochemical sensors, known for their high sensitivity, affordability, simplicity, and speed, have been widely adopted by researchers for Tar detection. This comprehensive paper delves into the detection of Tar in food products. It extensively covers the utilization of advanced carbon-based nanomaterials, including CDs, doped CDs, and functionalized CDs, for sensitive Tar detection. Additionally, the paper explores the application of electrochemical sensors. The paper concludes by addressing current challenges and prospects, emphasizing efforts to enhance sensitivity, and selectivity for improved food safety.
Collapse
Affiliation(s)
- Sharayu S Chaudhari
- Department of Quality Assurance, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India
| | - Zamir G Khan
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, Maharashtra 425 405, India.
| |
Collapse
|
9
|
Li F, Tang R, Kang Y, Cui X, Wang Y, Yang X. Fluorescent composite based on peptide nanotubes activating coumarin 6 for sensitive detection of new coccine in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123492. [PMID: 37844452 DOI: 10.1016/j.saa.2023.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
New coccine (NC), as a kind of common colorant, has been frequently used in our daily life. Herein, the fluorescent composite (PNTs@C6) prepared by the hydrophobic non-covalent interaction between peptide nanotubes and coumarin 6 (C6) was designed for the determination of NC. Due to the activation of C6 by peptide nanotubes, the composite exhibits strong green fluorescence emission, which can be selectively quenched by NC through the inner filter effect. Therefore, a new fluorescent method based on the PNTs@C6 composite for NC detection was constructed. Under optimal conditions, the fluorescence quenching of the sensor exhibits a good linear relationship with the concentration of NC in the range of 0.01-10 μM and the limit of detection is 3.6 nM. Furthermore, the strategy shows simplicity, rapid response and high selectivity and has been successfully applied to the detection of NC in food samples.
Collapse
Affiliation(s)
- Fang Li
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Rong Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Yujie Kang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China
| | - Xiaoyan Cui
- Nanchong Food and Drug Inspection Institute, Nanchong 637000, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| |
Collapse
|
10
|
Zhang J, Liu Y, Cui X, Cao Y, Li Y, Fang G, Wang S. A Smartphone-Integrated Molecularly Imprinted Fluorescence Sensor for Visual Detection of Chlortetracycline Based on N,P-Codoped Carbon Dots Decorated Iron-Based Metal-Organic Frameworks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16303-16309. [PMID: 37856445 DOI: 10.1021/acs.jafc.3c05406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The residue of chlortetracycline is potentially hazardous to human health; it is meaningful to exploit a portable, rapid, sensitive, and selective method for detection of chlortetracycline (CTC). In this study, a novel fluorescence bionic sensing probe (NH2-MIL-53&N,P-CDs@MIP) was successfully prepared based on the nitrogen and phosphorus codoped carbon dots decorated iron-based metal-organic frameworks combining with molecular imprinted polymer for the detection of CTC. A fluorescence intensity-responsive "on-off" detection of CTC on account of the inner-filter effect (IFE) was achieved by NH2-MIL-53&N,P-CDs@MIP. Under the optimal conditions, the fluorescence quenching degree of NH2-MIL-53&N,P-CDs@MIP presented a good linear relationship with the CTC concentration in the range 0.06-30 μg mL-1 and the limit of detection (LOD) was 0.019 μg mL-1. The fluorescent probe was applied to detect CTC in milk samples, and experimental results showed a good recovery rate (88.73%-96.28%). Additionally, a smartphone-integrated fluorescence sensing device based on NH2-MIL-53&N,P-CDs@MIP was exploited to replace the expensive and bulky fluorescence spectrophotometer for quantitative determination of CTC with the LOD of 0.033 μg mL-1. The sensing system showed high selectivity, strong stability, high specificity, and portability, which provide a great strategy for the quantitative detection of antibiotic residue.
Collapse
Affiliation(s)
- Jinni Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xueyan Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Dong G, Lv Q, Hao L, Zhang W, Zhang Z, Chai DF, Zhu M, Zhao M, Li J. Integration of N, P-doped carbon quantum dots with hydrogel as a solid-phase fluorescent probe for adsorption and detection of Fe 3. NANOTECHNOLOGY 2023; 34:465702. [PMID: 37567166 DOI: 10.1088/1361-6528/acef30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
In this work, a novel nitrogen-phosphorus co-doped carbon quantum dots (N, P-CQDs) hydrogel was developed utilizing the as-synthesized N, P-CQDs and acrylamide (AM) with the existence of ammonium persulfate and N, N'-methylene bisacrylamide (N-MBA). In consistent with pure N, P-CQDs, the N, P-CQDs hydrogel also shows a dramatic fluorescence property with maximum emission wavelength of 440 nm, which can also be quenched after adsorbing iron ions (Fe3+). When the concentration of Fe3+is 0-6 mmol l-1, a better linear relationship between Fe3+concentration and the fluorescence intensities can be easily obtained. Additionally, the N, P-CQDs hydrogel exhibits better recyclability. This confirms that the N, P-CQDs hydrogel can be used for adsorbing and detecting Fe3+in aqueous with on-off-on mode. The fluorescence quenching mainly involves three procedures including the adsorption of Fe3+by hydrogel, integration of Fe3+with N, P-CQDs and the transportation of conjugate electrons in N, P-CQDs to the vacant orbits of Fe3+and the adsorption process follows a pseudo-second-order kinetic model confirmed in the Freundlich isotherm model. In conclusion, this work provides a novel route for synchronously removing and detecting the metal ions in aqueous by integrating N, P-CQDs with hydrogel with better recyclability.
Collapse
Affiliation(s)
- Guohua Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Qihang Lv
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Lijuan Hao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Zhuanfang Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University, Qiqihar 161006, People's Republic of China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, People's Republic of China
| |
Collapse
|
12
|
Zhao Q, Li Y, Wei W, Huang J, Lu D, Liu S, Shi X. A ratiometric fluorescence-based colorimetric sensor for the portable analysis of antioxidants via smartphone. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Guo G, Li T, Wang Y, Hu H, Xing H, Tang S, Gao S, Leng X, Chen D. Aggregation-induced bimodal excitation of nitrogen-doped carbon dots for ratiometric sensing of new coccine and solid-state multicolor lighting. J Colloid Interface Sci 2023; 645:96-106. [PMID: 37146383 DOI: 10.1016/j.jcis.2023.04.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Trace detection of foodstuff pigments have gained increasing attention because of their close association with biological and environmental processes. Herein, we propose an innovative bimodal excitation nitrogen-doped carbon dots (N-CDs) for ratiometric sensing of new coccine (NC) pigment, which are synthesized by using melamine and o-phenylenediamine as precursors via solvothermal treatment. With the increase of the N-CDs concentration, N-CDs exhibit not only a concentration-dependent tunable color behavior, but also a novel aggregation-induced bimodal excitation phenomenon. Considering this distinctive bimodal excitation behavior, a ratiometric sensor based on N-CDs has been developed for the detection of the NC in different organic solvents due to the inner filter effect and fluorescence resonance energy transfer. The intensity ratio of two excitation signals is linear with the NC concentration in the range of 0.032-100 µM, and the limit of detection is as low as 32.1 nM. Meanwhile, we realize the design of multicolor-emission N-CDs/polymer films. All in all, this work presents a novel kind view of the mechanism of distinctive bimodal excitation of N-CDs, and further proposes an innovative ratiometric method for the screening analysis of NC in food samples and environmental pollutants.
Collapse
Affiliation(s)
- Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Yiru Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Siyuan Tang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Sineng Gao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Xuan Leng
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
14
|
Cheng L, Huang R, Cao Q, Liu N, Li P, Sun M, Qin H, Wu L. Magnetic metal–organic frameworks as adsorbents for the detection of azo pigments in food matrices. Food Chem 2023; 402:134134. [DOI: 10.1016/j.foodchem.2022.134134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
|
15
|
Chen Y, Yang X, Lu C, Yang Z, Wu W, Wang X. Novel colorimetric, photothermal and up-conversion fluorescence triple-signal sensor for rosmarinic acid detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Gong D, Li X, Zhang X, Zhang W, Chen T, Zhang X. Green fabrication of citrus pectin-Ag@AgCl/g-C3N4 nanocomposites with enhanced photocatalytic activity for the degradation of new coccine. Food Chem 2022; 387:132928. [DOI: 10.1016/j.foodchem.2022.132928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
|
17
|
F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Zhu W, Chen Y, Yu X, Liu H, Zhang Z, Wen F, Liu Y, Zhang P, Xia C, Li F. Synthesis of (
E
)‐1‐(phenyldiazenyl)cyclohexyl Benzoate from
N
‐(cyclohexylideneamino)aniline and Benzoyl Peroxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenjing Zhu
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Yu Chen
- School of Shandong Polytechnic College Jining 272067 China
| | - Xiao Yu
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Hongyan Liu
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Zheng Zhang
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Fuqiang Wen
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Yi Liu
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| | - Chengcai Xia
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| | - Furong Li
- School of Pharmacy College Institute of Pharmacology Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271016 China
| |
Collapse
|
19
|
Malini S, Roy A, Raj K, Raju KSA, Ali IH, Mahesh B, Yadav KK, Islam S, Jeon BH, Lee SS. Sensing beyond Senses: An Overview of Outstanding Strides in Architecting Nanopolymer-Enabled Sensors for Biomedical Applications. Polymers (Basel) 2022; 14:601. [PMID: 35160590 PMCID: PMC8840134 DOI: 10.3390/polym14030601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
Nano-enabled sensing is an expanding interdisciplinary field of emerging science with dynamic multifunctional detecting capabilities, equipped with a wide range of multi-faceted nanomaterial having diverse dimensions and composition. They have proven to be highly robust, sensitive, and useful diagnostic tools ranging from advanced industrial processes to ordinary consumer products. As no single nanomaterial has proved to be unparalleled, recent years has witnessed a large number of nanomaterial-based sensing strategies for rapid detection and quantification of processes and substances with a high degree of reliability. Nano-furnished platforms, because of easy fabrication methods and chemical versatility, can serve as ideal sensing means through different transduction mechanisms. This article, through a unified experimental-theoretical approach, uses literature of recent years to introduce, evaluate, and analyze significant developments in the area of nanotechnology-aided sensors incorporating the various classes of nanomaterial. Addressing the broad interests, the work also summarizes the sensing mechanisms using schematic illustrations, attempts to integrate the performance of different categories of nanomaterials in the design of sensors, knowledge gaps, regulatory aspects, future research directions, and challenges of implementing such techniques in standalone devices. In view of a dependency of analysis and testing on sustained growth of sensor-supported platforms, this article inspires the scientific community for more attention in this field.
Collapse
Affiliation(s)
- S. Malini
- Department of Chemistry, B.M.S. College of Engineering, Bangalore 560019, India;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Kalyan Raj
- Department of Chemistry, B.M.S. College of Engineering, Bangalore 560019, India;
| | - K. S. Anantha Raju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore 560078, India;
| | - Ismat H. Ali
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - B. Mahesh
- Department of Chemistry, JSS Academy of Technical Education, Bangalore 560060, India;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Sean Seungwon Lee
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| |
Collapse
|