1
|
Zeger VR, Thapa B, Shamsaei D, DeLair JF, Taylor TL, Anderson JL. Ionic Liquids in Analytical Chemistry: Fundamentals, Technological Advances, and Future Outlook. Anal Chem 2025; 97:4793-4818. [PMID: 40018979 PMCID: PMC11912132 DOI: 10.1021/acs.analchem.5c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
|
2
|
Dong Y, Liu J, Kong L, Deng D, Wu L, Chen Y. Pd/Cu-TCPP(Fe)-polydopamine mediated magnetic relaxation switching immunosensor for sensitive detection of chlorpyrifos. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136882. [PMID: 39694007 DOI: 10.1016/j.jhazmat.2024.136882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
This study presents the development of a magnetic relaxation switching (MRS) immunosensor for the sensitive detection of chlorpyrifos (CPF) with a signal amplification strategy using Pd/Cu-TCPP(Fe) hybrid nanosheets and polydopamine (PDA). Pd/Cu-TCPP(Fe) nanosheets, which exhibit high peroxidase-like activity and excellent storage stability, making them suitable replacements for natural enzymes in biosensors, are further functionalized with goat anti-mouse IgG (Ab2) to construct an immunosensor. The mechanism relies on the competition between free CPF and the immobilized bovine serum albumin-CPF conjugates for antibody binding, which modulates the aggregation of magnetic nanoparticles (MNPs) that are related to the transverse relaxation time. The optimized immunosensor shows a linear detection range from 0.5 ng/mL to 100 ng/mL and a limit of detection (LOD) of 0.24 ng/mL, outperforming traditional enzyme-linked immunosorbent assay (ELISA) methods by achieving an LOD that is about 9 times lower. Real sample analysis demonstrates the applicability of the Pd/Cu-TCPP(Fe)-PDA-MRS immunosensor for detecting CPF residues in tomato and water samples, with results well consistent with those obtained using gas chromatography. This work highlights the potential of nanomaterials in enhancing the performance of MRS immunosensors for pesticide residue analysis in environmental and food safety monitoring.
Collapse
Affiliation(s)
- Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Liqin Kong
- College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dongyang Deng
- State Key Laboratory of Marine Food Processing and Safety Control, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Long Wu
- State Key Laboratory of Marine Food Processing and Safety Control, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China; School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, PR China.
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| |
Collapse
|
3
|
Chen X, Tian W. Selective extraction and determination of chlorpyrifos residues from aqueous samples using biochar-functionalized molecularly imprinted polymer combined with high-performance liquid chromatography. J Chromatogr A 2025; 1741:465611. [PMID: 39718260 DOI: 10.1016/j.chroma.2024.465611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The concentration of chlorpyrifos (CPF) in aqueous samples was determined using a novel molecularly imprinted dispersive solid-phase extraction (MISPE) approach that was presented in this research. Using a non-covalent molecular imprinting technique, a biochar (BC)-functionalized molecularly imprinted polymers (MIPs) (BC-MIPs) was created. These MIPs were used in dispersive solid-phase extraction (DSPE) in conjunction with high-performance liquid chromatography with photodiode array detection (HPLC-PDA) to detect CPF in aqueous samples with high sensitivity. Using methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker, BC-MIPs were created using CPF as a template. By using the suggested dispersive solid-phase extraction (DSPE) approach, the efficiency of the synthesized BC-MIPs granules was evaluated. Analytical performance of the devised DSPE-HPLC-PDA technique was assessed under optimal settings. The optimized parameters included extraction time, aqueous sample pH, desorption time and desorption reagents. Compared with the traditional method, the established method has better selective adsorption capacity, reusability and sensitivity for CPF. The suggested method presented that limit of detection and limit of quantification were 1.0 ng/mL and 4.0 ng/mL, along with excellent linear range (4.0-1500 ng/mL) with coefficients of determination (R2=0.9982). The established method was successfully used to determination CPF in aqueous samples from the Baisha River in Qingdao, with the advantages of accuracy (recoveries: 81.2 %-103.6 %, RSDs≤9.2 %), speed (CPF-BC-MIPs-DSPE time: 75 min; HPLC-PDA time: 12 min), selectivity (imprinting factor: 4.24), and economy (50 mg of adsorbent synthesized using cheap straw and 1 mL of solvents), which partially conform to the current advanced principle of "3S+2A" in analytical chemistry. The BC-MIPs granules shown potential for CPF preconcentration in complicated samples and were effective carriers for the selective adsorption of CPF.
Collapse
Affiliation(s)
- Xinwei Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Qingdao Engineering Vocational College, Qingdao 266000, China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; Laoshan Laboratory, Qingdao 266234, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
4
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Gong J, Zhang X, Liang R, Ma J, Yang N, Cai K, Wu J, Xie Z, Zhang S, Chen Y, Liao Q. Rapidly enrichment and detection of per-and polyfluoroalkyl substances in foods using a novel bifunctional covalent organic framework. Food Chem 2024; 447:139016. [PMID: 38513494 DOI: 10.1016/j.foodchem.2024.139016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are extensively found in foods, posing potential toxicity to humans. Therefore, rapid analysis and monitoring of PFASs in foods are crucial for public health and also a challenge. To detect trace PFASs in foods, construction of sorbents with multiple interactions could be an effective approach. Herein, a cationic-fluorinated covalent organic framework (CF-COF) was prepared by post-modification and used as a magnetic solid-phase extraction adsorbent for adsorption of PFASs. By combining magnetic solid-phase extraction based on CF-COF with liquid chromatography-tandem mass spectrometry (LC - MS/MS), a novel method was developed for determination of eight long-chain PFASs in foods. Under optimized conditions, the method exhibited low detection limits (0.003-0.019 ng/g) and satisfactory recovery rates (73.5-118%) for PFASs. This study introduces a novel idea for the development of adsorbents targeting PFASs, along with a new analytical method for monitoring of PFASs in foods.
Collapse
Affiliation(s)
- Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, China
| | - Shusheng Zhang
- Center for Modern Analysis and Gene Sequencing, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China..
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China..
| |
Collapse
|
6
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
7
|
Liu W, Zheng P, Xia Y, Li F, Zhang M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024; 269:125352. [PMID: 37984233 DOI: 10.1016/j.talanta.2023.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The threat from pesticide trifluralin residues to ecological environment and public health is becoming a growing problem. Thus, rapid and sensitive detection, particularly a simple and portable detected platform for trifluralin residues, are highly desired. Here, a small organic aggregation-induced emission (AIE) molecule (TPETPy) is facilely synthesized and applied to detect trifluralin both in lab and in actual water systems. Based on the photo-induced electron transfer (PET) mechanism, the emissive peak of TPETPy located at 475 nm in tetrahydrofuran (THF)/water mixture (ƒw = 90 %) under the excitation of 340 nm, decreases dramatically upon trace trifluralin addition and exhibits ultra-fast response (3 s), high sensitivity and selectivity, and good anti-interference ability. The fluorescence sensing correlation with the concentration of trifluralin shows good linearity in the range of 20-90 μg L-1 with the limit of detection of 6.28 μg L-1. Moreover, a portable smartphone-integrated detected platform based on fluorescent pattern Red/Green/Blue (RGB) values is first employed to realize the real-time and on-site quantitative fluorescent detection of trifluralin in actual water sources, featuring good accuracy and reproducibility. Hereby, this work provides not only a highly efficient trifluralin residues fluorescent probe but also a portable and straightforward operating platform to detect trifluralin pesticides quantitatively.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, PR China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
8
|
Zeger VR, Bell DS, Anderson JL. Polymeric ionic liquid sorbent coatings in thin film microextraction: Insight into sorbent selectivity for pesticides and cannabinoids. J Chromatogr A 2024; 1715:464583. [PMID: 38160584 DOI: 10.1016/j.chroma.2023.464583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Polymeric ionic liquid (PIL) sorbent coatings consisting of polymerizable cations and anions were employed as sorbent coatings in thin film microextraction (TFME) for the extraction of pesticides and cannabinoids. The blades consisted of a thin film of PIL sorbents chemically bonded to vinyltrimethoxysilane-functionalized nitinol sheets. The imidazolium- or ammonium-based PIL sorbents contained aromatic benzyl moieties as well as polar hydroxyl groups or aliphatic functional groups within the chemical structure of the IL monomer. The chemical structure of the IL crosslinkers of the PILs were kept constant across each sorbent, except for the anion, which consisted of either bis[(trifluoromethyl)sulfonyl]imide ([NTf2-]), p-styrenesulfonate ([SS-]), or 3-sulfopropyl acrylate ([SPA-]). Temperature, salt content, and methanol content were optimized as extraction conditions to maximize pesticide-cannabinoid selectivity using Doehlert design of experiments (DOE). Effects of these three factors on selectivity and extraction efficiency are discussed. The optimal extraction conditions consisting of sample temperature (31°C), sodium chloride (30% w/v), and methanol content (0.25% v/v) are compared to initial sorbent screening conditions at a sample temperature of 40°C, 15% (w/v) sodium chloride, and 2.5% (v/v) methanol content. PIL sorbent swelling behavior at different salt and methanol content conditions and its effect on extraction efficiency are hypothesized. Selectivity factors for the sorbents indicated that aromatic moieties within the IL monomer may enhance pesticide-cannabinoid selectivity under optimized conditions, but the extraction efficiency of pesticides that are known to coelute with cannabinoids in the chromatographic separation may be enhanced by employing sorbent coatings with [SPA-] anions.
Collapse
Affiliation(s)
- Victoria R Zeger
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011, USA
| | - David S Bell
- Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania 16823, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA 50011, USA.
| |
Collapse
|
9
|
Koonani S, Ghiasvand A. A highly porous fiber coating based on a Zn-MOF/COF hybrid material for solid-phase microextraction of PAHs in soil. Talanta 2024; 267:125236. [PMID: 37757692 DOI: 10.1016/j.talanta.2023.125236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
This study involved the development of a novel adsorbent by combining a Zn-based MOF with a melamine-based COF, resulting in the formation of a hybrid material known as Zn-MOF/COF. The adsorbent was characterized using FT-IR, SEM, XRD, EDX, and BET analysis techniques. The resulting Zn-MOF/COF sorbent was employed to prepare solid-phase microextraction (SPME) fibers for the extraction and enrichment of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil samples, after coupling with GC-FID. A Box-Behnken design (BBD) was used to optimize key variables of SPME conditions. Under optimal conditions of 85 °C for 30 min extraction with 23 μL g-1 sample's moisture level, linear responses of six PAHs were ranging from 1 to 20000 ng g⁻1 with determination coefficients greater than 0.99. Limits of detection (LODs) were over the ranges of 0.1-1 ng g-1. The RSDs for intra-fiber and inter-fiber analyses were obtained 2.2-6.6% and 5.2-11.6%, respectively. Relative recoveries values for real soil samples were found to be 91.1-110.2%. The results showed lower cost and higher extraction efficiency for the Zn-MOF/COF fiber, compared with commercial and homemade adsorbents.
Collapse
Affiliation(s)
- Samira Koonani
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran.
| |
Collapse
|
10
|
Tuo S, Liu C, Wang C, Kong B, Lu H, Zhong K, Li Y, Liu W, Yu J. Evaluation of Fourier deconvolution ion mobility spectrometer as high-performance gas chromatography detector for the analysis of plant extract flavors. J Chromatogr A 2024; 1714:464560. [PMID: 38070304 DOI: 10.1016/j.chroma.2023.464560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The Fourier deconvolution ion mobility spectrometer (FDIMS) offers multiplexing and improves the resolving power and signal-to-noise ratio. To evaluate the FDIMS as a detector for gas chromatography for the analysis of complex samples, we connected a drift tube ion mobility spectrometer to a commercial gas chromatograph and compared the performance including resolving power, sensitivity, and linear range using 2,6-di‑tert-butylpyridine. Mixed standards were also injected into the tandem system to evaluate the performance under optimized conditions. A complex plant extract sample used as natural flavoring was investigated using the resulting system. The results show that the instrument implemented with the Fourier deconvolution multiplexing method demonstrated higher performance over the traditional signal averaging method including higher resolving power, better limit of detection, and wider linear range for a variety of compounds and natural plant extract flavorings.
Collapse
Affiliation(s)
- Suxing Tuo
- Center of Technology, China Tobacco Hunan Industrial Co. Ltd., Changsha, 410007, China.
| | - Can Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Cheng Wang
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Bo Kong
- Center of Technology, China Tobacco Hunan Industrial Co. Ltd., Changsha, 410007, China
| | - Hongbin Lu
- Center of Technology, China Tobacco Hunan Industrial Co. Ltd., Changsha, 410007, China
| | - Kejun Zhong
- Center of Technology, China Tobacco Hunan Industrial Co. Ltd., Changsha, 410007, China
| | - Yuqiao Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
11
|
Asghari E, Saraji M. Preparation of a magnetic molecularly imprinted polymer on fibrous silica nanosphere via self-polycondensation for micro solid-phase extraction of chlorpyrifos. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123961. [PMID: 38118337 DOI: 10.1016/j.jchromb.2023.123961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Throughout this research, a new magnetic molecularly imprinted polymer on fibrous silica nanosphere was prepared through self-polycondensation. The selective extraction of chlorpyrifos was performed by the synthesized sorbent and as a determination system, a gas chromatography-electron capture was applied. The formation of sorbent was confirmed through the use of Fourier transform infrared spectroscopy and field emission scanning electron microscopy techniques. The parameters affecting the extraction efficacy of the proposed method were scrutinized in an optimized way. The linear range and the detection limit of the studied method were 0.003-0.3 and 0.001 ng mL-1, respectively. The relative standard deviations were 4.1-5.2 and 5.6-7.6 % for intra- and inter-day (n = 3), respectively. To assess the performance of the proposed method, some water and fruit samples were analyzed and the extraction recoveries of 83-109 % were obtained. These results revealed the method's performance in the analysis of chlorpyrifos in real samples.
Collapse
Affiliation(s)
- Effat Asghari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
12
|
Zhang X, Li Z, Wang Y, Zhang S, Zang X, Wang C, Wang Z. Preparation of black phosphorus nanosheets/ zeolitic imidazolate framework nanocomposite for high-performance solid-phase microextraction of organophosphorus pesticides. J Chromatogr A 2023; 1708:464339. [PMID: 37660557 DOI: 10.1016/j.chroma.2023.464339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Design and preparation of new fiber coatings for solid-phase microextraction (SPME) is of significance to the sample preparation techniques. Herein, a facile strategy has been developed for the integration of the black phosphorus (BP) nanosheets with metal-organic framework (ZIF-8) to generate a BP/ZIF-8 nanocomposite. For the first time, the newly-synthesized BP/ZIF-8 nanocomposite was adopted as the SPME fiber coating for the extraction of organophosphorus pesticides (OPPs). Under the optimized conditions, the BP/ZIF-8 based SPME method gained acceptable linearity (0.04-20 µg L-1), low limits of detection (0.012-0.051 µg L-1) and good repeatability (3.2-8.1%). Coupled with gas chromatography-mass spectrometric detection, the developed SPME method was successfully used for the preconcentration of OPPs from environmental waters with the method recoveries from 92.0%-103.8%. This method offers a good alternative for the analysis of trace OPPs in environmental water samples.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yang Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
13
|
Zhou S, Kuang Y, Lin H, Zheng J, Ouyang G. Modulating covalent organic frameworks with accessible carboxyl to boost superior extraction of polar nitrobenzene compounds from matrix-complicated beverages. Food Chem 2023; 426:136626. [PMID: 37354579 DOI: 10.1016/j.foodchem.2023.136626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The wide use and high polarity of nitrobenzene compounds (NBCs) have caused a concern for their residues in daily beverages. Herein, the covalent organic frameworks (COFs) with abundant carboxyl were ingeniously designed by introducing a novel modulator, and further developed as solid phase microextraction (SPME) coatings. Due to the enhanced polar interaction, the extraction efficiencies of modified COF for NBCs were sharply increased. After coupling the high-performance SPME fiber with gas chromatograph-mass spectrometry (GC-MS), an ultrasensitive analytical method was developed, with a wide linear range (0.50-5000 ng/L), and low limits of detection (0.15-3.0 ng/L). More importantly, the method was highly feasible and practical, leading to the precise determinations of trace NBCs from variously matrix-complicated samples. This work provides a viable and efficacious approach for the extraction and analysis of polar pollutants form complicated matrices, and is of great significance for mild COF modification and its extended applications in analytical chemistry.
Collapse
Affiliation(s)
- Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hongkai Lin
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
14
|
Aliabadi HM, Zargoosh K. Synthesis of 3-amino-1,2,4-triazole-5-thiol functionalized p-phenylenediamine covalent organic polymer as a highly selective adsorbent for Hg2+ ions. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2023.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Tabibi A, Dinari M, Afshari M. κ-Carrageenan/triazin-based covalent organic framework bionanocomposite: Preparation, characterization, and its application in fast removing of BB41 dye from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117400. [PMID: 36753895 DOI: 10.1016/j.jenvman.2023.117400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A novel and high efficient adsorbent was prepared based on an environmentally friendly substrate, κ-carrageenan, and a triazine-based covalent organic framework as a co-adsorbent component. Combining these two precursors leads to an effective nanocomposite for removing Basic blue 41 dye from aqueous media. After confirm the structural of prepared composite by various analysis, the adsorption properties were investigated. The optimum conditions were obtained in: pH: 7, temperature: 25 °C and contact time: 210 min; and adsorbent dosage of 10 mg. According to the isotherms study, the basic blue 41 dye adsorption was matched to the Longmuir model with single-layer mechanism. The kinetic of adsorption was studied and fitted with pseudo-second order model with R2 = 0.971. From the results the maximum adsorption capacity of 833 mg/g was obtained in 15 min and the reusability tests showed 24% decrease in yield after three cycles.
Collapse
Affiliation(s)
- Alireza Tabibi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohaddeseh Afshari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
16
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu J, Wang J, Wang Y, Wang Y. Covalent organic frameworks as advanced materials in the application of chemical detection. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junyan Liu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Junfeng Wang
- Department of Otolaryngology & Head and Neck Surgery Affiliated Hospital of Yangzhou University Yangzhou China
| | - Ying Wang
- Department of Oncology Affiliated Hospital of Yangzhou University Yangzhou China
| | - Yang Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
18
|
Li X, Ji W, Wang R, Zhang L, Miao R, Wang S. Imprinted covalent organic frameworks prepared by thiol-ene click reaction for selective solid-phase microextraction of aminoglycosides from milk and honey. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Afshari M, Dinari M. Improving the Reaction-to-Fire Properties of Thermoplastic Polyurethane by New Phosphazene-Triazinyl-Based Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49003-49013. [PMID: 36282083 DOI: 10.1021/acsami.2c14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, an approach to simultaneously improve fire resistance and mechanical performance of thermoplastic polyurethane (TPU) was introduced through the penetration of a conjugated network containing nitrogen and phosphorus elements. For this purpose, a Bg-HCCP COF was synthesized through a solvothermal method from benzoguanamine (Bg) and hexachlorophosphazene (HCCP) monomers. Then, it was combined with TPU using the wet mixing method. The TPU/Bg-HCCP composites showed better mechanical strength than the untreated sample. The fire safety of TPU/Bg-HCCP composites was greatly improved by increasing the Bg-HCCP contents. The reduction of the peak heat release rate and the total heat release for the TPU/Bg-HCCP composite with 3 wt % Bg-HCCP were about 44.8 and 60.4%, respectively. Besides, the results showed that adding Bg-HCCP to TPU significantly improved the suppression of smoke generation so that 3% by weight of the fire retardant reduced the total smoke released by 53.1%. It also decreased the peak of the carbon monoxide production rate by 26.5%. Generally, our research provides a promising strategy for constructing flame-retardant composites with high performance.
Collapse
Affiliation(s)
- Mohaddeseh Afshari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| |
Collapse
|
20
|
Dolatabadi M, Naidu H, Ahmadzadeh S. Adsorption characteristics in the removal of chlorpyrifos from groundwater using magnetic graphene oxide and carboxy methyl cellulose composite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Gao Y, Sheng K, Bao T, Wang S. Recent applications of organic molecule-based framework porous materials in solid-phase microextraction for pharmaceutical analysis. J Pharm Biomed Anal 2022; 221:115040. [PMID: 36126613 DOI: 10.1016/j.jpba.2022.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Sample preparation is an indispensable part of detection of complex samples in pharmaceutical analysis. Solid-phase microextraction (SPME) has obtained a lot of attention due to its advantages of time saving, less solvent and easily automation. A variety of functional materials are used as sorbents in SPME to carry out selective and high extraction. This review centers around the recent applications of organic molecule-based framework porous materials, such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), as SPME coating materials mainly focus on pharmaceutical analysis in food, environment, and biological samples. Four representative extraction devices are introduced, including on-fiber SPME, in-tube SPME, thin film SPME, stir bar SPME. The application prospect of other organic porous materials as sorbents for pharmaceutical analysis are also discussed, such as hyper crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs). The progresses and discusses are provided to offer references for further research focusing on application and development of organic molecule-based framework porous materials in the field of SPME.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Kangjia Sheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| |
Collapse
|
22
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
23
|
Lin LY, Chen KF, Changchien LL, Chen KC, Peng RY. Volatile Variation of Theobroma cacao Malvaceae L. Beans Cultivated in Taiwan Affected by Processing via Fermentation and Roasting. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103058. [PMID: 35630547 PMCID: PMC9145787 DOI: 10.3390/molecules27103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022]
Abstract
After being harvested, cacao beans are usually subjected to very complex processes in order to improve their chemical and physical characteristics, like tastefulness with chocolate characteristic flavors. The traditional process consists of three major processing stages: fermentation, drying, and roasting, while most of the fermentation is carried out by an on-farm in-box process. In Taiwan, we have two major cocoa beans, the red and the yellow. We proposed that the major factor affecting the variation in tastes and colors in the finished cocoa might be the difference between cultivars. To uncover this, we examined the effect of the three major processes including fermentation, drying and roasting on these two cocoa beans. Results indicated that the two cultivars really behaved differently (despite before or after processing with fermentation, drying, and roasting) with respect to the patterns of fatty acids (palmitic, stearic, oleic, and arachidonic); triacylglycerols:1,2,3-trioleoyl-glycerol (OOO); 1-stearoyl-2,3-oleoyl-glycerol (SOO); 1-stearoyl-sn-2-oleoyl-3-arachidoyl- glycerol (SOA); 1,3-distearyol-sn-2-oleoyl-glycerol (SOS); organic acids (citric, tartaric, acetic, and malic); soluble sugars (glucose and fructose); amino acids; total phenolics; total flavonoids; and volatiles. Our findings suggest that to choose specific processing conditions for each specific cocoa genotype is the crucial point of processing cocoa with consistent taste and color.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (K.-F.C.)
| | - Kwei-Fan Chen
- Department of Food and Applied Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (L.-Y.L.); (K.-F.C.)
| | - Lin-Ling Changchien
- Department of Physical Therapy, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, 250, Wu-Xin St., Xin-Yi District, Taipei 11031, Taiwan
- Correspondence:
| | - Robert Y. Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Xin St., Taipei 11031, Taiwan;
- Research Institute of Biotechnology, School of Health Care, Hungkuang University, 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|