1
|
Bai X, Yin F, Ru A, Li M, Tian W, Zhang G, Chen Q, Chai R, Liu Y, Cui W, Shi H, Zhu C, Zhao G. Myosin heavy chain isoform expression and meat quality characteristics of different muscles in yak (Bos grunniens). Meat Sci 2024; 209:109414. [PMID: 38101288 DOI: 10.1016/j.meatsci.2023.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Myosin heavy chain (MHC) isoforms and meat quality characteristics of different muscles were investigated to explore their potential relationships in yaks. Results showed that semitendinosus (ST), longissimus thoracis (LT), and infraspinatus (IS) have a greater ratio of MHC IIb (47.84%), MHC IIa (73.27%), and MHC I (24.26%), respectively, than the other two muscles. Compared with LT or ST, IS exhibited more intense color, greater water-holding capacity, and initial tenderness with higher intermuscular fat (IMF) and collagen (of lower cross-linking level), presenting overall better quality. Variations in MHC isoforms accounted for the muscle-specific meat quality. Specifically, MHC I was positively associated with redness, myoglobin, IMF, collagen, pH, and thermal stability and negatively associated with myofibril fragmentation index, fiber thickness, collagen cross-linking, and drip loss. These results provide insights into the relationships between MHC isoforms and meat quality in yaks and the MHC I isoform has an extensive influence on meat quality.
Collapse
Affiliation(s)
- Xueyuan Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Yin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ang Ru
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiyan Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingwen Chen
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Rong Chai
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenming Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongmei Shi
- National Beef Cattle and Yak Industry Technology System Gannan Comprehensive Test Station, Hezuo 747000, China
| | - Chaozhi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Zhan F, Li Z, Pan D, Benjakul S, Li X, Zhang B. Investigating the migration hypothesis: Effects of trypsin-like protease on the quality of muscle proteins of red shrimp ( Solenocera crassicornis) during cold storage. Food Chem X 2023; 20:100906. [PMID: 38144848 PMCID: PMC10740068 DOI: 10.1016/j.fochx.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to investigate the effect of trypsin-like protease (TLP) on the quality of muscle proteins in red shrimp (Solenocera crassicornis) during cold storage. The results indicated that the activity of TLP decreased significantly in the head of shrimp but increased significantly in the muscle tissues during the cold storage. The myofibril fragmentation index (MFI) value of intact shrimp was significantly higher than that of beheaded shrimp, while the Ca2+-ATPase activity of intact shrimp was significantly lower than that of beheaded shrimp. SDS-PAGE analysis showed that the molecular weight of purified TLP from the shrimp head was about 24 kDa, and the TLP showed high activity at 50 °C and pH 8, indicating that the TLP belongs to the trypsin family. Results from in vitro simulation experiments indicated that the process of TLP incubation significantly reduced the particle size and enlarged the distribution of myofibrillar proteins (MPs) in shrimp muscle tissues. The comparisons were made with respect to the control samples. It can be inferred that TLP migrated from the shrimp head to the muscle tissues during storage and thus promoted the degradation of MPs in red shrimp. The beheading treatment could be an effective mean to maintain better quality and extend the commercialization of shrimp products.
Collapse
Affiliation(s)
- Feili Zhan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Zhipeng Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Daodong Pan
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Bai X, Yin F, Ru A, Tian W, Chen Q, Chai R, Liu Y, Cui W, Li J, Yin M, Zhu C, Zhao G. Effect of slaughter age and postmortem aging time on tenderness and water-holding capacity of yak (Bos grunniens) longissimus thoracis muscle. Meat Sci 2023; 202:109201. [PMID: 37120977 DOI: 10.1016/j.meatsci.2023.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
The present study investigated the effect of slaughter age (2.43 ± 0.20, 4.15 ± 0.19, 6.62 ± 0.18, 10.59 ± 0.74 years) and postmortem aging time (1, 24, and 72 h) on the tenderness and water-holding capacity (WHC) of yak longissimus thoracis muscles to determine the most suitable age for slaughter to ensure product consistency. Under conventional postmortem aging conditions (4 °C), muscles of each age group exhibited the effect of cold shortening. Once the cold shortening occurred, the age effect on thickening muscle fiber and developing cross-links of collagen, considered to intensify the meat toughness, became less important. Owing to greater carcass weight and intramuscular fat, muscles of the older carcass (over 6-year-old) were less influenced by the cold shortening effect during the chilling process and showed lessened sarcomere contraction, delayed formation of drip loss channels, and increased level of myofibril fragmentation index (MFI) and myofiber structural disintegration, resulting in greater tenderness and WHC, especially 6-7 years group. Aging of 72 h structurally disintegrated the collagen cross-linking and integrity of muscle fibers and elevated the MFI, improving the meat tenderness. Therefore, the suitable slaughter age for yak is 6-7 years old and after 72 h aging, improved quality of yak meat can be obtained.
Collapse
Affiliation(s)
- Xueyuan Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Yin
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Ang Ru
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Tian
- College of Animal Husbandry and Veterinary Science Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingwen Chen
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Rong Chai
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenming Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiahui Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China
| | - Mancai Yin
- National Beef Cattle and Yak Industry Technology System Qinghai Yak Breeding and Promotion Service Center, Xining 810016, China
| | - Chaozhi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Liu J, Hu Z, Liu D, Zheng A, Ma Q. Glutathione metabolism-mediated ferroptosis reduces water-holding capacity in beef during cold storage. Food Chem 2023; 398:133903. [DOI: 10.1016/j.foodchem.2022.133903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/10/2022] [Accepted: 08/07/2022] [Indexed: 12/15/2022]
|