1
|
Huang G, Ma J, Chen J, Zhang W, Fan Q, Han B. Controllable Strategy of Metal-Organic Framework Structural Stability: Regulation of Ligand Electronegativity by Esterification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413853. [PMID: 39639733 PMCID: PMC11789593 DOI: 10.1002/advs.202413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Structural stability of metal-organic framework (MOF) is crucial for their application, and thus it is of great significance to construct MOFs with controllable structural stability. Herein, a strategy based on adjusting the electronic environment of ligands to regulate the structure stability of MOF is proposed. Briefly, a novel Zr-MOF (Zr-TA) with hydroxyl groups is synthesized. The hydroxyl groups are esterified to obtain ester groups with stronger electronegativity, which can weaken the strength of coordination between metal ion and ligand, thereby regulating the structure stability of the Zr-MOF. Notably, this strategy can achieve controllable adjustment of the structure by adding modifiers at the appropriate time. In this work, this strategy is used to greatly improving the binding ability of MOF and collagen fibers, the hydrothermal stability of crosslinked collagen fibers is enhanced by 82.6%. Surprisingly, this strategy can also be applied to other application fields that require dynamic changes in structural stability of MOF. It will open up a new pathway for controlling the structural stability and application performance of MOF.
Collapse
Affiliation(s)
- Guanjie Huang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & Technology (SUST)Xi'an710021China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & Technology (SUST)Xi'an710021China
| | - Jie Chen
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & Technology (SUST)Xi'an710021China
| | - Wenbo Zhang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & Technology (SUST)Xi'an710021China
| | - Qianqian Fan
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & Technology (SUST)Xi'an710021China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesChinese Academy of Sciences (CAS)Beijing100190China
| |
Collapse
|
2
|
Lan W, Zhou M, Zhang B, Liu S, Yan P, Xie J. Effects of chitosan-gentianic acid derivatives on the quality and shelf life of seabass (Lateolabrax maculatus) during refrigerated storage. Int J Biol Macromol 2024; 274:133276. [PMID: 38906360 DOI: 10.1016/j.ijbiomac.2024.133276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Chitosan is a natural polymer material with antibacterial, biodegradable and biocompatibility. At present, the research is mainly to enhance the antibacterial and antioxidant activity of chitosan by grafting with phenolic acids to further expand its application in food. In this study, the effect of chitosan-g-gentisic acid graft copolymer (CS-g-GA) on the shelf life of refrigerated seabass (Lateolabrax maculatus) was investigated. The results of microbial analysis demonstrated that GA and CS-g-GA treatment could effectively inhibit the growth of microorganisms. In addition, physicochemical analysis showed that GA and CS-g-GA treatment could reduce the increase of pH value, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N) and K-value, delay water loss, maintain texture and color, and postpone the decrease of sensory score. Compared with the control sample, CS-g-GA could keep the quality of Lateolabrax japonicus and extend its shelf-life for another 9 days. In summary, CS-g-GA has good application and development prospects for the preservation of seabass.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Mingxing Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shucheng Liu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Peiling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
3
|
Li S, Wang G, Zhao J, Ou P, Yao Q, Wang W. Ultrasound-Assisted Extraction of Phenolic Compounds from Celtuce ( Lactuca sativa var. augustana) Leaves Using Natural Deep Eutectic Solvents (NADES): Process Optimization and Extraction Mechanism Research. Molecules 2024; 29:2385. [PMID: 38792246 PMCID: PMC11124495 DOI: 10.3390/molecules29102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Natural deep eutectic solvents (NADESs), as emerging green solvents, can efficiently extract natural products from natural resources. However, studies on the extraction of phenolic compounds from celtuce (Lactuca sativa var. augustana) leaves (CLs) by NADESs are still lacking. This study screened the NADES L-proline-lactic acid (Pr-LA), combined it with ultrasound-assisted extraction (UAE) to extract phenolic compounds from CLs, and conducted a comparative study on the extraction effect with traditional extraction solvents. Both SEM and FT-IR confirmed that Pr-LA can enhance the degree of fragmentation of cell structures and improve the extraction rate of phenolic compounds. Molecular dynamics simulation results show that Pr-LA can improve the solubility of phenolic compounds and has stronger hydrogen bonds and van der Waals interactions with phenolic compounds. Single-factor and Box-Behnken experiments optimized the process parameters for the extraction of phenolic compounds from CLs. The second-order kinetic model describes the extraction process of phenolic compounds from CLs under optimal process parameters and provides theoretical guidance for actual industrial production. This study not only provides an efficient and green method for extracting phenolic compounds from CLs but also clarifies the mechanism of improved extraction efficiency, which provides a basis for research on the NADES extraction mechanism.
Collapse
Affiliation(s)
- Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Penghui Ou
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (S.L.); (G.W.); (J.Z.); (P.O.)
| |
Collapse
|
4
|
Kontoghiorghes GJ. The Puzzle of Aspirin and Iron Deficiency: The Vital Missing Link of the Iron-Chelating Metabolites. Int J Mol Sci 2024; 25:5150. [PMID: 38791185 PMCID: PMC11121054 DOI: 10.3390/ijms25105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylsalicylic acid or aspirin is the most commonly used drug in the world and is taken daily by millions of people. There is increasing evidence that chronic administration of low-dose aspirin of about 75-100 mg/day can cause iron deficiency anaemia (IDA) in the absence of major gastric bleeding; this is found in a large number of about 20% otherwise healthy elderly (>65 years) individuals. The mechanisms of the cause of IDA in this category of individuals are still largely unknown. Evidence is presented suggesting that a likely cause of IDA in this category of aspirin users is the chelation activity and increased excretion of iron caused by aspirin chelating metabolites (ACMs). It is estimated that 90% of oral aspirin is metabolized into about 70% of the ACMs salicyluric acid, salicylic acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. All ACMs have a high affinity for binding iron and ability to mobilize iron from different iron pools, causing an overall net increase in iron excretion and altering iron balance. Interestingly, 2,3-dihydroxybenzoic acid has been previously tested in iron-loaded thalassaemia patients, leading to substantial increases in iron excretion. The daily administration of low-dose aspirin for long-term periods is likely to enhance the overall iron excretion in small increments each time due to the combined iron mobilization effect of the ACM. In particular, IDA is likely to occur mainly in populations such as elderly vegetarian adults with meals low in iron content. Furthermore, IDA may be exacerbated by the combinations of ACM with other dietary components, which can prevent iron absorption and enhance iron excretion. Overall, aspirin is acting as a chelating pro-drug similar to dexrazoxane, and the ACM as combination chelation therapy. Iron balance, pharmacological, and other studies on the interaction of iron and aspirin, as well as ACM, are likely to shed more light on the mechanism of IDA. Similar mechanisms of iron chelation through ACM may also be implicated in patient improvements observed in cancer, neurodegenerative, and other disease categories when treated long-term with daily aspirin. In particular, the role of aspirin and ACM in iron metabolism and free radical pathology includes ferroptosis, and may identify other missing links in the therapeutic effects of aspirin in many more diseases. It is suggested that aspirin is the first non-chelating drug described to cause IDA through its ACM metabolites. The therapeutic, pharmacological, toxicological and other implications of aspirin are incomplete without taking into consideration the iron binding and other effects of the ACM.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
5
|
Bouymajane A, Filali FR, Moujane S, Majdoub YOE, Otzen P, Channaoui S, Ed-Dra A, Bouddine T, Sellam K, Boughrous AA, Miceli N, Altemimi AB, Cacciola F. Phenolic Compound, Antioxidant, Antibacterial, and In Silico Studies of Extracts from the Aerial Parts of Lactuca saligna L. Molecules 2024; 29:596. [PMID: 38338341 PMCID: PMC10856452 DOI: 10.3390/molecules29030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Medicinal plants are considered a major source for discovering novel effective drugs. To our knowledge, no studies have reported the chemical composition and biological activities of Moroccan Lactuca saligna extracts. In this context, this study aims to characterize the polyphenolic compounds distributed in hydro-methanolic extracts of L. saligna and evaluate their antioxidant and antibacterial activities; in addition, in silico analysis based on molecular docking and ADMET was performed to predict the antibacterial activity of the identified phenolic compounds. Our results showed the identification of 29 among 30 detected phenolic compounds with an abundance of dicaffeoyltartaric acid, luteolin 7-glucoronide, 3,5-di-O-caffeoylquinic acid, and 5-caffeoylquinic acid with 472.77, 224.30, 196.79, and 171.74 mg/kg of dried extract, respectively. Additionally, antioxidant activity assessed by DPPH scavenging activity, ferric reducing antioxidant power (FRAP) assay, and ferrous ion-chelating (FIC) assay showed interesting antioxidant activity. Moreover, the results showed remarkable antibacterial activity against Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes with minimum inhibitory concentrations between 1.30 ± 0.31 and 10.41 ± 0.23 mg/mL. Furthermore, in silico analysis identified three compounds, including Apigenin 7-O-glucuronide, Quercetin-3-O-glucuronide, and 3-p-Coumaroylquinic acid as potent candidates for developing new antibacterial agents with acceptable pharmacokinetic properties. Hence, L. saligna can be considered a source of phytochemical compounds with remarkable activities, while further in vitro and in vivo studies are required to explore the main biological activities of this plant.
Collapse
Affiliation(s)
- Aziz Bouymajane
- Biology, Environment and Health Team, Faculty of Sciences and Technologies, Moulay Ismail University, Meknes 50070, Morocco
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Fouzia Rhazi Filali
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Soumia Moujane
- Biochemistry of Natural Substances, Faculty of Science and Techniques, Moulay Ismail University, Errachdia 50003, Morocco
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Philipp Otzen
- Institute of Anorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Souhail Channaoui
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural Research, P.O. Box 415, Rabat 10090, Morocco
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M’ghila Campus, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Toufik Bouddine
- Bioactive Molecules, Health and Biotechnology, Centre of Technology and Transformation, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of Sciences and Technologies, Moulay Ismail University, Meknes 50070, Morocco
| | - Ali Ait Boughrous
- Biology, Environment and Health Team, Faculty of Sciences and Technologies, Moulay Ismail University, Meknes 50070, Morocco
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Ammar B. Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| |
Collapse
|
6
|
Duan Y, Zhao LJ, Zhou YH, Zhou QZ, Fang AQ, Huang YT, Ma Y, Wang Z, Lu YT, Dai YP, Li SX, Li J. UPLC-Q-TOF-MS, network analysis, and molecular docking to investigate the effect and active ingredients of tea-seed oil against bacterial pathogens. Front Pharmacol 2023; 14:1225515. [PMID: 37745048 PMCID: PMC10513458 DOI: 10.3389/fphar.2023.1225515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Object: This research intended to probe the antibacterial effect and pharmacodynamic substances of Tea-Seed Oil (TSO) through the use of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis, network analysis, and molecular docking. Methods: The major chemical components in the methanol-extracted fractions of TSO were subjected to UPLC-Q-TOF-MS. Network pharmacology and molecular docking techniques were integrated to investigate the core components, targets, and potential mechanisms of action through which the TSO exert their antibacterial properties. To evaluate the inhibitory effects, the minimum inhibitory concentration and diameter of the bacteriostatic circle were calculated for the potential active ingredients and their equal ratios of combinatorial components (ERCC) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Moreover, the quantification of the active constituents within TSO was achieved through the utilization of high-performance liquid chromatography (HPLC). Results: The methanol-extracted fractions contained a total of 47 chemical components, predominantly consisting of unsaturated fatty acids and phenolic compounds. The network pharmacology analysis and molecular docking analysis revealed that various components, including gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phlorizin, have the ability to interact with critical core targets such as serine/threonine protein kinase 1 (AKT1), epidermal growth factor receptor (EGFR), a monoclonal antibody to mitogen-activated protein kinase 14 (MAPK14), HSP90AA1, and estrogen receptor 1 (ESR1). Furthermore, these components can modulate the phosphatidylinositol-3-kinase protein kinase B (PI3K-AKT), estrogen, MAPK and interleukin 17 (IL-17) signaling pathways, hereby exerting antibacterial effects. In vitro validation trials have found that seven components, namely gallocatechin, gallic acid, epigallocatechin, theophylline, chlorogenic acid, puerarin, and phloretin, displayed substantial inhibitory effects on E. coli, S. aureus, P. aeruginosa, and C. albicans, and are typically present in tea oil, with a total content ranging from 15.87∼24.91 μg·g-1. Conclusion: The outcomes of this investigation possess the possibility to expand our knowledge base concerning the utilization of TSO, furnish a theoretical framework for the exploration of antibacterial drugs and cosmetics derived from inherently occurring TSO, and establish a robust groundwork for the advancement and implementations of TOS products within clinical settings.
Collapse
Affiliation(s)
- Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li-Juan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan-Hui Zhou
- Hunan Amazing Grace Biotechnology Co, Ltd, Changsha, China
| | - Qi-Zhi Zhou
- Hunan Amazing Grace Biotechnology Co, Ltd, Changsha, China
| | - Ai-Qing Fang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ting Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuan Ma
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ting Lu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Ping Dai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shun-Xiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| |
Collapse
|
7
|
Zhang Y, Wang X, Zeng Q, Deng Y, Xie P, Zhang C, Huang L. A new insight into synergistic effects between endogenous phenolic compounds additive and α-tocopherol for the stability of olive oil. Food Chem 2023; 427:136667. [PMID: 37364319 DOI: 10.1016/j.foodchem.2023.136667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Investigation of edible oil stability involves interactions between additive polyphenols and the inherent tocopherols. The work aimed to identify endogenous polyphenols to produce the synergistic effect with α-tocopherol in olive oil and to find the right action ratio. Caffeic acid and quercetin were selected from the 15 main endogenous phenolic compounds in olive oil. Quercetin had the strongest synergistic effect with α-tocopherol at 2:1 in the olive oil model. The rate of 2:1 also was the turning point of the change of synergism. Furthermore, the addition of quercetin and α-tocopherol at 2:1 to olive oil resulted in lower POV, K232, K270, and secondary oxidation products such as (E, E)-2,4-decadienal and 2-pentylfuran than the olive oil model with a single antioxidant in three months of accelerated oxidation. The dynamic changes of antioxidants during oxidation in olive oil indicated that their synergistic effect was the repair and regeneration of α-tocopherol by quercetin.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qingyue Zeng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Yejun Deng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Li Y, Liao B, Wang Y, Luo H, Wang S, Li C, Song W, Zhang K, Yang B, Lu S, Zhang B, Li Y. Transcriptome and metabolome analyses provide insights into the relevance of pericarp thickness variations in Camellia drupifera and Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2022; 13:1016475. [PMID: 36388553 PMCID: PMC9647060 DOI: 10.3389/fpls.2022.1016475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Camellia fruit is a woody edible oil source with a recalcitrant pericarp, which increases processing costs. However, the relevance of pericarp thickness variations in Camellia species remains unclear. Therefore, this study aimed to identify pericarp differences at the metabolic and transcription levels between thick-pericarp Camellia drupifera BG and thin-pericarp Camellia oleifera SG. Forty differentially accumulated metabolites were screened through non-targeted UHPLC-Q-TOF MS-based metabolite profiling. S-lignin was prominently upregulated in BG compared with SG, contributing to the thick pericarp of BG. KEGG enrichment and coexpression network analysis showed 29 differentially expressed genes associated with the lignin biosynthetic pathway, including 21 genes encoding catalysts and 8 encoding transcription factors. Nine upregulated genes encoding catalysts potentially led to S-lignin accumulation in BG pericarp, and transcription factors NAC and MYB were possibly involved in major transcriptional regulatory mechanisms. Conventional growth-related factors WRKYs and AP2/ERFs were positively associated while pathogenesis-related proteins MLP328 and NCS2 were negatively associated with S-lignin content. Thus, Camellia balances growth and defense possibly by altering lignin biosynthesis. The results of this study may guide the genetic modifications of C. drupifera to optimize its growth-defense balance and improve seed accessibility.
Collapse
Affiliation(s)
- Yongjuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Boyong Liao
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huihua Luo
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shimin Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Caiqin Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenpei Song
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kunchang Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Boqun Yang
- State-owned Xiaokeng Forest Farm in Qujiang District of Shaoguan City, Shaoguan, China
| | - Shaoqiang Lu
- State-owned Xiaokeng Forest Farm in Qujiang District of Shaoguan City, Shaoguan, China
| | - Bipei Zhang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|