1
|
Xiong Y, Huang X, Li Y, Nie Y, Yu H, Shi Y, Xue J, Ji Z, Rong K, Zhang X. Integrating larval zebrafish model and network pharmacology for screening and identification of edible herbs with therapeutic potential for MAFLD: A promising drug Smilax glabra Roxb. Food Chem 2025; 464:141470. [PMID: 39406145 DOI: 10.1016/j.foodchem.2024.141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is becoming a prevalent chronic liver disease. Many medicinal and edible herbs exhibit remarkable biological activities in ameliorating MAFLD but lack a comprehensive assessment of their therapeutic efficacy. This study determined total phenolic and flavonoid contents and in vitro antioxidant properties of 34 edible herbs. Smilax glabra Roxb. (SGR), Coreopsis tinctoria Nutt., and Smilax china L. were obtained with the best bioactivity and antioxidant capacity. The high-cholesterol diet-induced larval zebrafish model was established to compare the anti-MAFLD activity of the three herb extracts mentioned above. In vivo experiments revealed that SGR intervention significantly decreased lipid accumulation, alleviated oxidative stress, and modulated intestinal microbiota composition in zebrafish. Furthermore, three potential active components in SGR and their possible mechanisms were explored through network pharmacology and molecular docking. Our study suggested that SGR is a potential candidate for developing new drugs or dietary supplements for MAFLD therapy.
Collapse
Affiliation(s)
- Yinjuan Xiong
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xixuan Huang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuxin Li
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaqi Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiajie Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhehui Ji
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Keming Rong
- Research Institute of Huanong-Tianchen, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Research Institute of Huanong-Tianchen, Wuhan 430070, China.
| |
Collapse
|
2
|
Chen L, Tan X, Ming R, Huang D, Tan Y, Li L, Huang R, Yao S. Genome-Wide Identification of the bHLH Gene Family in Callerya speciosa Reveals Its Potential Role in the Regulation of Isoflavonoid Biosynthesis. Int J Mol Sci 2024; 25:11900. [PMID: 39595970 PMCID: PMC11593548 DOI: 10.3390/ijms252211900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Callerya speciosa (Champ. ex Benth.) Schot is a significant leguminous plant valued for its edible tuberous roots, which are a plentiful source of isoflavonoids. Basic helix-loop-helix (bHLH) transcription factors (TFs) have been reported to regulate secondary metabolism in plants, especially flavonoid biosynthesis. However, the bHLH genes in C. speciosa have not yet been reported, and their regulatory role in isoflavonoid biosynthesis remains unexplored. Here, 146 CsbHLH genes were identified in the C. speciosa genome, classifying them into 23 subfamilies based on the gene structures and phylogenetic relationships. All the CsbHLH proteins contained both motifs 1 and 2, whereas motif 8 was only distributed in subgroup III (d + e). Collinearity analysis demonstrated that fragmental replications are the primary driver of CsbHLH evolution, with the majority of duplicated CsbHLH gene pairs experiencing selective pressure. Nine candidate CsbHLH genes were found to play a potential role in regulating isoflavonoid biosynthesis through a combination of gene-to-metabolite correlation analysis and weighted gene co-expression network analysis (WGCNA). Additionally, the cis-regulatory elements and response to MeJA of these nine genes were characterized and confirmed through quantitative real-time PCR (qRT-PCR) analysis. Among them, three CsbHLHs (CsbHLH9, CsbHLH89, and CsbHLH95) were selected for further investigation. Yeast two-hybrid (Y2H), dual-luciferase (LUC) assays, bimolecular fluorescence complementation (BiFC) assays, and transient transformation demonstrated that CsbHLH9 acted as a transcriptional activator through its interaction with CsMYB36 and binding to the promoters of isoflavonoid biosynthesis genes in a MeJA-induced manner, such as CsIFR2, CsI3'H2, and CsCHS4, to promote isoflavonoid (calycosin, calycosin-7-o-glucoside, and formononetin) accumulation. Our results establish a basis for the functional analysis of bHLH genes and investigations into the molecular mechanisms underlying isoflavonoid biosynthesis in C. speciosa.
Collapse
Affiliation(s)
- Liuping Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
| | - Xiaoming Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Yang Q, Wang Q, Wang Z, Li Z, Tang H, Yan X, Feng S, Wang M. Metabolomic profiling and antidiabetic activity of Callerya speciosa. Nat Prod Res 2024; 38:4050-4054. [PMID: 37840299 DOI: 10.1080/14786419.2023.2265535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
Callerya speciosa is a perennial edible and medicinal plant belonging to the family Fabaceae. This study was to reveal the similarities and differences between phytochemicals in different parts of C. speciosa using a combination of ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS), principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). In addition, the anti-diabetic activity of C. speciosa extracts was explored. A total of 141 compounds were identified and 34 robustly known chemical markers were marked. PCA and heat map analyses revealed that the stems, leaves and pods had similar phytochemical compounds, while compounds in roots and flowers differed from each other and from those in the above ground parts. In addition, extracts of C. speciosa roots and flowers exhibited anti-diabetic activity, which can be applied to the development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Qing Yang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| | - Qinglong Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| | - Zhunian Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| | - Zhiying Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| | - Huan Tang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| | - Xiaoxia Yan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| | - Shixiu Feng
- Key Laboratoory of South Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Maoyuan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Tropical Wild Plant Gene Resource, Ministry of Agriculture/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs, Haikou, P.R. China
- Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou, P.R. China
| |
Collapse
|
4
|
Ma Y, Guo X, Wu P, Li Y, Zhang R, Xu L, Wei J. Comprehensive Analysis Reveals the Difference in Volatile Oil between Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li and the Other Four Medicinal Bupleurum Species. Molecules 2024; 29:2561. [PMID: 38893436 PMCID: PMC11173446 DOI: 10.3390/molecules29112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding its viability as an alternative resource of other official species. This study aims to systematically compare the volatile oil components of both dried and fresh roots of B. marginatum var. stenophyllum and the four legally available Bupleurum species across their chemical, molecular, bionics, and anatomical structures. A total of 962 compounds were determined via GC-MS from the dried roots; B. marginatum var. stenophyllum showed the greatest differences from other species in terms of hydrocarbons, esters, and ketones, which was consistent with the results of fresh roots and the e-nose analysis. A large number of DEGs were identified from the key enzyme family of the monoterpene synthesis pathway in B. marginatum var. stenophyllum via transcriptome analysis. The microscopic observation results, using different staining methods, further showed the distinctive high proportion of phloem in B. marginatum var. stenophyllum, the structure which produces volatile oils. Together, these pieces of evidence hold substantial significance in guiding the judicious development and utilization of Bupleurum genus resources.
Collapse
Affiliation(s)
- Yuzhi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
| | - Xinwei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
| | - Peiling Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
| | - Yuting Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
| | - Ruyue Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
| | - Lijia Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Jianhe Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.M.); (X.G.); (P.W.); (Y.L.); (R.Z.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| |
Collapse
|
5
|
Wang F, Huang Y, Hou Z, Chen Y, Lou G, Qi Z, Zhang X, Dennis M, Zhang L, Wei Y, Yang D. Evolution and chemical diversity of the volatile compounds in Salvia species. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:493-506. [PMID: 38114450 DOI: 10.1002/pca.3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION The plant essential oils are composed of volatile compounds and have significant value in preventing and treating neurological diseases, anxiety, depression, among others. The genus Salvia has been shown to be an important medicinal resource, especially the aerial parts of genus Salvia, which are rich in volatile compounds; however, the chemical diversity and distribution patterns of volatile compounds in Salvia species are still unknown. OBJECTIVE The work is performed to analyse the chemical diversity and distribution patterns of volatile compounds in genus Salvia. METHODS The genomic single nucleotide polymorphisms (SNPs) combined with gas chromatography-mass spectrometry (GC-MS) were used to explore the evolution and chemical diversity of Salvia volatile compounds. Initially, the genetic relationship of genus Salvia was revealed by phylogenetic tree that was constructed based on SNPs. And then, GC-MS was applied to explore the chemical diversity of volatile compounds. RESULTS The results indicated that the volatile compounds were mainly monoterpenoids, sesquiterpenoids, and aliphatic compounds. The genomic SNPs divided species involved in this work into four branches. The volatile compounds in the first and second branches were mainly sesquiterpenoids and monoterpenoids, respectively. Species in the third branch contained more aliphatic compounds and sesquiterpenoids. And those in the fourth branch were also rich in monoterpenoids but had relatively simple chemical compositions. CONCLUSION This study offered new insights into the phylogenetic relationships besides chemistry diversity and distribution pattern of volatile compounds of genus Salvia, providing theoretical guidance for the investigations and development of secondary metabolites.
Collapse
Affiliation(s)
- Feiyan Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanbo Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ganggui Lou
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhechen Qi
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mans Dennis
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Lei Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yukun Wei
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Shanghai Botanical Garden/Shanghai Engineering Research Centre of Sustainable Plant Innovation, Shanghai, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Engineering Research Centre for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Shaoxing, China
| |
Collapse
|
6
|
Zeng Y, Yang Q, Huang B, Chen M, Liang Z, Zhang Z, Zhang J. Utilizing Integrated UHPLC-Q-Exactive Orbitrap-MS, Multivariate Analysis, and Bioactive Evaluation to Distinguish between Wild and Cultivated Niudali ( Millettia speciosa Champ.). Molecules 2024; 29:806. [PMID: 38398558 PMCID: PMC10892563 DOI: 10.3390/molecules29040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Millettia speciosa Champ. (MSCP) enjoys widespread recognition for its culinary and medicinal attributes. Despite the extensive history of MSCP cultivation, the disparities in quality and bioactivity between wild and cultivated varieties have remained unexplored. In this study, 20 wild and cultivated MSCP samples were collected from different regions in China. We embarked on a comprehensive investigation of the chemical constituents found in both wild and cultivated MSCP utilizing UHPLC-Q-Exactive Orbitrap-MS technology and multivariate analysis such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). In total, 62 chemical components were unequivocally identified or tentatively characterized. Via the multivariate statistical analysis, we successfully pinpointed nine compounds with the potential to serve as chemical markers, enabling the differentiation between wild and cultivated MSCP varieties. Moreover, both genotypes exhibited substantial antioxidant and anti-fatigue properties. The bioactivities of wild MSCP were marginally higher when compared to their cultivated counterparts. This study illuminates the impressive antioxidant and anti-fatigue potential present in both wild and cultivated MSCP genotypes, further augmenting the allure of this species and opening new avenues for the economic valorization of MSCP. Hence, this study provides a valuable method for the identification and quality control of MSCP and a method in chemistry and pharmacology to assess an alternative possibility for cultivated MSCP.
Collapse
Affiliation(s)
- Yuwei Zeng
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China;
| | - Qing Yang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Binbin Huang
- Qin Zhou Inspection and Testing Center, Qinzhou 535000, China
| | - Ming Chen
- Qin Zhou Provincial Health School, Qinzhou 535000, China
| | - Zichang Liang
- Qin Zhou Provincial Health School, Qinzhou 535000, China
| | - Zhifeng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Jianguang Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
- Qin Zhou Provincial Health School, Qinzhou 535000, China
| |
Collapse
|
7
|
Zhang Y, Huang J, Gan L, Wu R, Jin J, Wang T, Sun S, Zhang Z, Li L, Zheng X, Zhang K, Sun L, Ma H, Li D. Hepatoprotective effects of Niudali ( Callerya speciosa) root aqueous extracts against tetrachloromethane-induced acute liver injury and inflammation. Food Sci Nutr 2023; 11:7026-7038. [PMID: 37970412 PMCID: PMC10630805 DOI: 10.1002/fsn3.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 11/17/2023] Open
Abstract
Niudali (Callerya speciosa) is commonly grown in southeastern regions of China and consumed as a food ingredient. Although Niudali root extracts showed various biological activities, the hepatoprotective effects of Niudali root phytochemicals are not fully studied. Herein, we prepared two Niudali root aqueous extracts, namely, c and Niudali polysaccharides-enriched extract (NPE), and identified an alkaloid, (hypaphorine) in NEW. The hepatoprotective effects of NWE, NPE, and hypaphorine were evaluated in an acute liver injury model induced by carbon tetrachloride (CCl4) in mice. Pathohistological examination and blood chemistry assays showed that treatment of NWE, NPE, and hypaphorine alleviated CCl4-induced liver damage by lowering the liver injury score (by 75.51%, 80.01%, and 41.22%) and serum aspartate and alanine transaminases level (by 63.24%, 85.22%, and 49.74% and by 78.73%, 80.08%, and 81.70%), respectively. NWE, NPE, and hypaphorine also reduced CCl4-induced hepatic oxidative stresses in the liver tissue by decreasing the levels of malondialdehyde (by 40.00%, 51.25%, and 28.75%) and reactive oxygen species (by 30.22%, 36.14%, and 33.54%) while increasing the levels of antioxidant enzymes including superoxide dismutase (by 21.36%, 21.64%, and 8.90%), catalase (by 22.13%, 33.33%, and 5.39%), and glutathione (by 84.87%, 90.65%, and 80.53%), respectively. Mechanistic assays showed that NWE, NPE, and hypaphorine alleviated liver damage by mediating inflammatory biomarkers (e.g., pro-inflammatory cytokines) via the signaling pathways of mitogen-activated protein kinases and nuclear factor-κB. Findings from our study extend the understanding of Niudali's hepatoprotective effects, which is useful for its development as a dietary intervention for liver inflammation.
Collapse
Affiliation(s)
- Yizi Zhang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Jinwen Huang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Lishe Gan
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Rihui Wu
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Jingwei Jin
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| | - Tinghan Wang
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Xi Zheng
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & UtilizationGuangzhouChina
| | - Hang Ma
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Dongli Li
- School of Biotechnology and Health SciencesWuyi UniversityJiangmenChina
- International Healthcare Innovation Institute (Jiangmen)JiangmenChina
| |
Collapse
|
8
|
Raslan MA, Mounier MM. Phytochemical Profiling and Compound Isolation of Cissus rhombifolia Vahl. Leaves Aqueous Methanolic Extract with the Evaluation of Its Anti-Inflammatory Effect Using Lipopolysaccharide-Induced Inflammation in RAW 264.7 Cells. Chem Biodivers 2023; 20:e202300307. [PMID: 37204915 DOI: 10.1002/cbdv.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/21/2023]
Abstract
The inflammatory disorders represent a serious health issue. Certain Cissus species possess anti-inflammatory effect. Cissus rhombifolia Vahl. leaves' anti-inflammatory activities and phytoconstituents are poorly characterized. In this study, 38 constituents were tentatively characterized in Cissus rhombifolia Vahl. leaves' aqueous methanolic extract (CRLE) using high-performance liquid chromatography combined with mass spectrometry (HPLC/MS) and Proton Nuclear Magnetic Resonance (1 H-NMR). Myricetin, β-amyrin, and alliospiroside A, were isolated from CRLE using column chromatography. The anti-inflammatory effect of CRLE and its isolated compounds were studied in lipopolysaccharide (LPS)-induced RAW 264.7 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay) was used to assess how CRLE and its isolated compounds affected cell viability. Further, its effects on the production of intracellular NO, and inflammatory cytokines cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) were assessed by the Griess test, and cytokine enzyme-linked immunosorbent assays, respectively. CRLE and its isolated compounds, myricetin, β-amyrin, and alliospiroside A decreased the NO production. Western blotting was performed to assess the protein expression levels of the inflammatory cytokines inducible nitric oxide synthase (iNOS). Alliospiroside A downregulated IL-6, TNF-α, and COX-2 and inhibited the expression of iNOS. CRLE and its compounds represent effective alternative candidate to treat inflammatory diseases.
Collapse
Affiliation(s)
- Mona A Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | - Marwa M Mounier
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| |
Collapse
|
9
|
Zhang J, Wang J, Wang Y, Chen M, Shi X, Zhou X, Zhang Z. Phytochemistry and Antioxidant Activities of the Rhizome and Radix of Millettia speciosa Based on UHPLC-Q-Exactive Orbitrap-MS. Molecules 2022; 27:7398. [PMID: 36364224 PMCID: PMC9656107 DOI: 10.3390/molecules27217398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2023] Open
Abstract
The root of Millettia speciosa Champ. (MSCP) is used in folk medicine and is popular as a soup ingredient. The root is composed of the rhizome and radix, but only the radix has been used as a food. Thus, it is very important to compare the chemical components and antioxidant activities between the rhizome and radix. The extracts were analyzed by UHPLC-Q-Exactive Orbitrap-MS and multivariate analysis, and the antioxidant activities were evaluated by 2,20-azinobis (3-ethylbenzothiazo-line-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Ninety-one compounds were detected simultaneously and temporarily identified. Ten compounds were identified as chemical markers to distinguish the rhizome from the radix. The antioxidant activities of the radix were higher than the rhizome. Correlation analysis showed that uvaol-3-caffeate, 3-O-caffeoyloleanolic acid, and khrinone E were the main active markers for antioxidant activity, which allowed for the rapid differentiation of rhizomes and the radix. Therefore, it could be helpful for future exploration of its material base and bioactive mechanism. In addition, it would be considered to be used as a new method for the quality control of M. speciosa.
Collapse
Affiliation(s)
- Jianguang Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
- Qin Zhou Provincial Health School, Qinzhou 535009, China
| | - Junjun Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Yue Wang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
| | - Ming Chen
- Qin Zhou Provincial Health School, Qinzhou 535009, China
| | - Xuemin Shi
- Qin Zhou Provincial Health School, Qinzhou 535009, China
| | - Xiaoping Zhou
- Qin Zhou Provincial Health School, Qinzhou 535009, China
| | - Zhifeng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
10
|
Comprehensive Metabolic Profiling of Euphorbiasteroid in Rats by Integrating UPLC-Q/TOF-MS and NMR as Well as Microbial Biotransformation. Metabolites 2022; 12:metabo12090830. [PMID: 36144234 PMCID: PMC9504842 DOI: 10.3390/metabo12090830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Euphorbiasteroid, a lathyrane-type diterpene from Euphorbiae semen (the seeds of Euphorbia lathyris L.), has been shown to have a variety of pharmacological effects such as anti-tumor and anti-obesity. This study aims to investigate the metabolic profiles of euphorbiasteroid in rats and rat liver microsomes (RLMs) and Cunninghamella elegans bio-110930 by integrating ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS), UNIFI software, and NMR techniques. A total of 31 metabolites were identified in rats. Twelve metabolites (M1–M5, M8, M12–M13, M16, M24–M25, and M29) were matched to the metabolites obtained by RLMs incubation and the microbial transformation of C. elegans bio-110930 and their structures were exactly determined through analysis of NMR spectroscopic data. In addition, the metabolic pathways of euphorbiasteroid were then clarified, mainly including hydroxylation, hydrolysis, oxygenation, sulfonation, and glycosylation. Finally, three metabolites, M3 (20-hydroxyl euphorbiasteroid), M24 (epoxylathyrol) and M25 (15-deacetyl euphorbiasteroid), showed significant cytotoxicity against four human cell lines with IC50 values from 3.60 μM to 40.74 μM. This is the first systematic investigation into the in vivo metabolic pathways of euphorbiasteroid and the cytotoxicity of its metabolites, which will be beneficial for better predicting the metabolism profile of euphorbiasteroid in humans and understanding its possible toxic material basis.
Collapse
|
11
|
Li D, Xu Z, Li Y, Gan L, Wu P, Wu R, Jin J, Zheng X, Zhang K, Ma H, Li L. Polysaccharides from Callerya speciosa alleviate metabolic disorders and gut microbiota dysbiosis in diet-induced obese C57BL/6 mice. Food Funct 2022; 13:8662-8675. [PMID: 35904346 DOI: 10.1039/d2fo00337f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Callerya speciosa ("Niu Dali" in Chinese) is a well-known edible plant in Southeast China. C. speciosa roots contain a high level of polysaccharides, which have been reported to show multiple health-promoting effects. In the current study, the anti-obesity effects of a crude extract of C. speciosa polysaccharides (NP) and its underlying mechanisms of action are investigated. C57BL/6 mice were divided into three groups and fed either a standard diet or a high-fat diet (HFD). The HFD + NP group mice received oral administration of NP (100 mg per kg per day) every other day for 10 weeks. NP supplementation alleviated HFD-induced diabetic biomarkers including body weight gain, hyperlipidemia, liver steatosis, and adipocyte hypertrophy. Western blot and RT-PCR analyses revealed that NP inhibited hepatic de novo lipogenesis and adipogenesis (i.e. decreased expression of Srebp1c, Fas, Cebpα, and Pparγ), stimulated adipocyte lipolysis (enhanced mRNA expression of Hsl and Mgl), and attenuated HFD-induced hepatic inflammation (decreased expression of TNF-α and NF-κB p65). Furthermore, 16S rDNA and GC-MS analyses showed that NP supplementation restored the Firmicutes/Bacteroidetes proportion, elevated colon-derived SCFAs, especially acetic acid content, and increased the relative abundance of genera associated with SCFA production in HFD-fed mice. Findings from this study suggest that NP alleviated HFD-induced obesity in a mouse model, which was possibly due to its ameliorative effects on diet-induced gut dysbiosis. Polysaccharides from C. speciosa are promising prebiotics and they may be further developed as functional foods for the management of obesity.
Collapse
Affiliation(s)
- Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Zhaonan Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|