1
|
Wang J, Luo J, Liu H, Xu D, Li Y, Liu X, Zeng H. "Blue-red-purple" multicolored lateral flow immunoassay for simultaneous detection of GM crops utilizing RPA and CRISPR/Cas12a. Talanta 2025; 282:127010. [PMID: 39395308 DOI: 10.1016/j.talanta.2024.127010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Advanced multiplexed testing techniques should be designed and developed to ensure an accurate and reliable evaluation for unknown samples. In this study, an efficient platform coupled with the "Blue-Red-Purple" strategy based on recombinant polymerase amplification (RPA), CRISPR/Cas12a and lateral flow strip was established, which could realize the dual-target detection of CP4-EPSPS and Cry1Ab/Ac in genetically modified crops. The lateral flow immunoassay was developed using different colored microspheres to label the antibodies to realize the visualization of results and avoid cross-reactions. The proposed method exhibits high specificity, sensitivity and stability. The visual detection limits of standard plasmids and real samples reached 10 copies/μL and 0.5 %, respectively, which could be stored at 4 °C for 12 months with high detection ability. Moreover, the entire detection process could be completed within 50 min without any complex instruments or professional operators. These findings indicated that a sensitive, specific, rapid and accurate method was established for on-site detection of GM crops.
Collapse
Affiliation(s)
- Jinbin Wang
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Jiawei Luo
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hua Liu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Danhong Xu
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - You Li
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haijuan Zeng
- The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China; Crops Ecological Environment Security Inspection and Supervision Center, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co. Ltd., Shanghai, 201106, China.
| |
Collapse
|
2
|
Yang Y, Zhang Z, Wang Z, Pan R, Wu H, Zhai S, Wu G, Fu W, Gao H. Multi-chromatic and multi-component lateral flow immunoassay for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified crops. Mikrochim Acta 2024; 192:16. [PMID: 39680231 DOI: 10.1007/s00604-024-06853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/17/2024] [Indexed: 12/17/2024]
Abstract
A multi-chromatic and multi-component lateral flow immunoassay (MCMC-LFIA) was developed for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified (GM) crops. Captured antibodies specific to these exogenous proteins were separately immobilized on a nitrocellulose membrane as test zones. Multi-colored microspheres, used as visible multi-probes, were conjugated with corresponding antibodies and sprayed on the conjugate pad. The assay results can be visually interpreted within 10 min by observing the appearance of colored bands. The MCMC-LFIA demonstrated high sensitivity, with detection of limits of 7.8 ng/mL for CP4 EPSPS and 2.5 ng/mL for Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins, significantly improving the performance of previously reported LFIAs. The MCMC-LFIA exhibited excellent specificity and was validated for practical use in field-based applications. The proposed MCMC-LFIA offers a rapid, sensitive, and user-friendly tool for the on-site large-scale screening of GM materials.
Collapse
Affiliation(s)
- Yao Yang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zini Zhang
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhi Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Ruxin Pan
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huimin Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shanshan Zhai
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Wei Fu
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, 100176, China.
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Hongfei Gao
- Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|