1
|
Zhang C, Wang M, Chen J, Chang Z, Zhou J, Yue M, Gu C, Feng Z. Insight into peroxidase-mediated Morinda citrifolia L. (noni) fruit juice browning and precipitation, and a thermal inactivation strategy. Int J Biol Macromol 2025; 287:138502. [PMID: 39647742 DOI: 10.1016/j.ijbiomac.2024.138502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Peroxidase-mediated enzymatic browning during the process of noni fruit juice causes major color deterioration and precipitation, which negatively affects consumer acceptance of the juice. The purpose of this study was to understand the browning and precipitate formation mechanisms in noni fruit juice and improve its quality. Peroxidase was isolated from noni fruit via gel separation purification and characterized for its kinetic properties. The influences of key phenolic compounds on browning and precipitate formation were investigated via a noni-juice-based model system. The results revealed that the major noni peroxidase was a 50.05 kDa dimer subunit, and peroxidase activity was optimal at pH 6.0 and 30 °C, with an activation energy of 159.50 kJ/mol. Additionally, peroxidase activity was significantly inhibited by glutathione, sodium metabisulfite, and ascorbic acid. The active sites contained histidine and arginine residues. All eight phenolic compounds in juice act as specific substrates for peroxidase-mediated browning. Among them, gallic acid made the most significant contribution to both browning and precipitate formation. To effectively deactivate peroxidase activity while minimizing phenolic compound loss, a thermal treatment of 90 °C for 10 min was identified as the optimal approach. This study provides new insights into improving the quality of noni juice and enzyme browning.
Collapse
Affiliation(s)
- Chao Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mengrui Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junxia Chen
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Ziqing Chang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junping Zhou
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mingzhe Yue
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chunhe Gu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China.
| | - Zhen Feng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China.
| |
Collapse
|
2
|
Pan X, Bi S, Xu Y, Cai Y, Lao F, Wu J. Alteration of volatile profiles in heat-sterilized cloudy muskmelon juice as affected by pectin fractions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3532-3542. [PMID: 38146066 DOI: 10.1002/jsfa.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Flavor is considered as a key quality attribute of fruit juice affecting consumer acceptance. During processing, the flavor loss of cloudy juice always occurs due to the variations of juice cloud particles. Pectin, a major component of cloud particles, plays an important role in cloud stability. In this work, we focused on the effects of variation of three pectin fractions caused by gentle centrifugation and clarification on the physicochemical properties, volatile content and sensory profile of heat-sterilized muskmelon cloudy juice. RESULTS Centrifugation treatment reduced the total soluble solids and viscosity of cloudy juice and increased cloud stability. With centrifugation increased, the contents of most monosaccharides in the three pectin fractions were reduced. Most aroma-active aldehydes and alcohols, such as (2E,6Z)-nonadienal, 1-octen-3-ol and (E)-non-2-enal, after gentle centrifugation and clarification, were maintained, but most esters were decreased. The volatile compositions were highly related to the three pectin fractions. The addition of chelator-soluble pectin and sodium carbonate-soluble pectin could decrease the formation of dimethyl trisulfide and dimethyl disulfide in clarified juice, thereby improving the sensory profile. CONCLUSION The results suggested that endogenous chelator-soluble pectin and sodium carbonate-soluble pectin can be used in heat-sterilized fruit juice to improve flavor quality, with an emphasis on a significant reduction in volatile sulfur compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yingying Xu
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Yanpei Cai
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University; National Engineering Research Center for Fruit & Vegetable Processing; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory for Food Non-thermal Processing, Beijing, China
| |
Collapse
|
3
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
4
|
Li M, Zhang W, Guo C, Hu X, Yi J. Role of pectin characteristics in orange juice stabilization: Effect of high-pressure processing in combination with centrifugation pretreatments. Int J Biol Macromol 2022; 215:615-624. [PMID: 35777506 DOI: 10.1016/j.ijbiomac.2022.06.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
"High-pressure processing (HPP) plus" combined technologies are applied to overcome the limitation of single HPP and to produce juices with more stable quality during storage. This research explored the potential of HPP in combination with centrifugation to produce cloud stable orange juice during refrigerated storage. The results indicated that HPP combined processing technology significantly improved the cloud stability of orange juice, which was related to removed large particles, reduced viscosity, decreased protein contents, and inactivated pectin methylesterase activity induced by centrifugation (P < 0.05). Besides, chelator solubilized pectin (CSP) decreased but water solubilized pectin (WSP) maintained in the juice after centrifugation. During storage, the conversion of pectin fraction from WSP to CSP, resulting in sedimentation appeared in centrifugation treated orange juice when stored for 28 days. In general, pectin characteristics changes and pectin fractions conversion were the main driving forces affecting cloud stability of orange juice pasteurized by HPP in combination with centrifugation and during chilled storage.
Collapse
Affiliation(s)
- Minbo Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|