1
|
Zheng Z, Xu Y, Zou HX, Yan X, Cao P. N-Acetyl-O-methyl-tyrosine from Bipolaris bicolor: A novel fungicide for postharvest anthracnose and citrus preservation. Food Microbiol 2025; 130:104779. [PMID: 40210402 DOI: 10.1016/j.fm.2025.104779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
The necessity for safe and effective alternatives to conventional chemical fungicides is underscored by postharvest citrus fruit losses due to anthracnose, caused by Colletotrichum gloeosporioides. In this context, the biocontrol fungus Bipolaris bicolor WZU-HOG4, isolated from Ougan pericarp, was identified as possessing antimicrobial activity. Through bioassay-guided fractionation and subsequent metabolite profiling, N-Acetyl-O-methyl-tyrosine was identified as the active antifungal compound using NMR and HRESIMS. This compound demonstrated significant inhibitory effects against C. gloeosporioides and other pathogens, exhibiting a relatively broad-spectrum antifungal activity. Molecular docking analysis indicated that N-acetyl-O-methyl-tyrosine binds to tyrosinase with greater affinity than Vitamin C, effectively inhibiting its activity. Furthermore, Ougan fruits treated with the compound exhibited increased activities of antioxidant enzymes SOD, POD, and CAT, reduced MDA content, and decreased oxidative stress during storage. Cytotoxicity assays conducted on HEK-293 cells confirmed the compound's safety at the tested concentrations. N-acetyl-O-methyl-tyrosine emerges as a promising natural antifungal and tyrosinase inhibitor for citrus postharvest preservation, providing a safe alternative to chemical preservatives for extending shelf life.
Collapse
Affiliation(s)
- Zikui Zheng
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yicheng Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Ouhai Road, Wenzhou, 325014, China.
| | - Peng Cao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Ouhai Road, Wenzhou, 325014, China.
| |
Collapse
|
2
|
Sun Y, Zhao J, Rong J. Tyrosinase inhibition by natural stilbenoid glycosides: Critical role of the vinyl moiety in piceid for melanogenesis suppression. Arch Biochem Biophys 2025; 768:110405. [PMID: 40158648 DOI: 10.1016/j.abb.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Skin hyperpigmentation due to UV-induced tyrosinase activation and melanin overproduction is an ongoing challenge in cosmetic and dermatological applications. While resveratrol analogues show anti-melanogenic potential, the structure-activity relationships of their glycosylated derivatives remain underexplored. Here, we investigate how the vinyl moiety in the food-derived stilbenoid glycoside piceid (resveratrol-3-O-β-glucoside) affects tyrosinase inhibition. We reduced the vinyl moiety to yield dihydropiceid by catalytic hydrogenation and systematically assessed both compounds for anti-melanogenic effects. As results, piceid exhibited superior monophenolase inhibition over dihydropiceid in enzyme kinetics, while both compounds showed comparable diphenolase inhibition. Cellular assays revealed that piceid reduced melanin production by 59.2 % at 25 μM in α-MSH-stimulated B16F10 melanoma cells, whereas dihydropiceid showed weaker activity (<25 % reduction). MolgpKa analysis indicated that the vinyl moiety lowered the 4'-OH pKa (9.7 vs. 9.9), while UV-vis spectroscopy validated that the vinyl moiety enhanced the copper chelation capacity of piceid (ΔOD: 0.459) over dihydropiceid (ΔOD: 0.233). Molecular docking revealed that 4'-OH in piceid closely coordinated the tyrosinase binuclear copper center, whereas molecular dynamics simulation validated that hydrogen bonding supports the binding of both compounds to tyrosinase. Collectively, this study establishes the vinyl moiety in dietary stilbenoids as a critical pharmacophore for tyrosinase inhibition and thereby provides a molecular basis for developing natural anti-hyperpigmentation functional foods or cosmeceuticals.
Collapse
Affiliation(s)
- Yilu Sun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, China.
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, China.
| |
Collapse
|
3
|
Huang J, Li M, Han C, Zhang Z, Liu X, Ying Z, Yin P, Yang L. Structural and mechanistic insights into the anti-tyrosinase, anti-melanogenesis, and anti-browning effect of proanthocyanidins from seed coats of Acer truncatum Bunge. Int J Biol Macromol 2025; 284:138246. [PMID: 39622376 DOI: 10.1016/j.ijbiomac.2024.138246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Acer truncatum is a multifunctional tree species with broad applications in ornamental, healthy drink, and seed oil. In the present study, proanthocyanidins were isolated from the seed coats of A. truncatum, which were largely discarded as industrial wastes in seed oil production. Meanwhile, structural features, effects and mechanisms of anti-tyrosinase, anti-melanogenesis, and anti-browning of A. truncatum seed coat proanthocyanidins (ASPs) were systematically investigated. The joint application of FT-IR, MALDI-TOF-MS, hiolysis-coupled reverse-phase LC-ESI-MS, together with normal-phase LC confirmed that ASPs were predominately constituted by procyanidins with a mean polymerization degree of 12.09. Furthermore, ASPs powerfully inhibited both monophenolase and diphenolase activities of tyrosinase, and the inhibition of diphenolase was proved to be reversible and competitive-uncompetitive mixed type. Analyses of fluorescence quenching, UV spectra, and copper-ion chelation indicated that ASPs could inhibit tyrosinase in varied stages, and molecular docking and dynamic simulation further revealed the interaction mode between ASPs and tyrosinase. Cell assays further suggested that ASPs exhibited a strong inhibition against intracellular tyrosinase activity and melanin production through suppressing the expression of tyrosinase and microphthalmia transcription factor (MITF) at transcription level and caused apoptosis in B16F10 cells at higher concentrations. Antioxidant and anti-browning studies demonstrated that ASPs possessed high capacities of antioxidant, and potently suppress the browning of fresh-cut potatoes. Therefore, this study confirmed that seed coats of Acer truncatum is a potential natural source of tyrosinase, melanogenesis, and browning inhibitor, which provided a theoretical basis for the utilization of ASPs in the cosmetics, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Jiangping Huang
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Meiting Li
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Chengyun Han
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Zhongwei Zhang
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Xiang Liu
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Zhixuan Ying
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China
| | - Peipei Yin
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China.
| | - Lingguang Yang
- College of Chemical and Biological Engineering, Yichun University, Yichun 336000, China.
| |
Collapse
|
4
|
Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini AL, Borgarelli C, Pisciotta L, Mecocci P, Nencioni A, Monacelli F. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024; 16:3431. [PMID: 39458427 PMCID: PMC11510231 DOI: 10.3390/nu16203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elena Page
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ottaviani
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
5
|
Xu ZY, Hu Z, La CS, Du NN, Bai M, Hao J, Lin B, Huang XX, Song SJ. Hydroxyl-Amide Alkaloids from Pepper Roots: Potential Sources of Natural Antioxidants and Tyrosinase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19800-19811. [PMID: 39116367 DOI: 10.1021/acs.jafc.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Pepper (Piper nigrum L.) is a widely used spice plant known for its fruits and roots, which serve as flavor enhancers in culinary applications and hold significant economic value. Despite the popularity of pepper fruits, their roots remain relatively understudied, with limited research conducted on their bioactive components. This study focused on discovering and separating the primary bioactive amide alkaloids found in pepper roots. The process involved using the antioxidant activity of crude fractions and the Global Natural Products Social Molecular Networking analysis platform. The process led to the discovery of 23 previously unknown hydroxyl-amide alkaloids. Notably, compounds 11, 12, and 14 showed excellent antioxidant activity, while compound 11 exhibited significant inhibitory effects on mushroom tyrosinase. Theoretical exploration of enzyme-ligand interactions was conducted through molecular docking and molecular dynamics simulation. The findings of this study highlight the potential of hydroxyl-amide alkaloids as antioxidant products and natural food preservatives in the pharmaceutical and food cosmetic industries.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chang-Sheng La
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ning-Ning Du
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinle Hao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
6
|
Cytarska J, Szulc J, Kołodziej-Sobczak D, Nunes JA, da Silva-Júnior EF, Łączkowski KZ. Cyrene™ as a tyrosinase inhibitor and anti-browning agent. Food Chem 2024; 442:138430. [PMID: 38241986 DOI: 10.1016/j.foodchem.2024.138430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The tyrosinase pathway takes part in the enzymatic process of food browning and is primarily responsible for food spoilage - manifesting itself from a decrease in its nutritional value to a deterioration of taste, which consequently leads to a gradual loss of shelf life. Finding safe and bio-based tyrosinase inhibitors and anti-browning agents may be of great importance in agriculture and food industries. Herein, we showed that Cyrene™ exhibits tyrosinase inhibitory activity (IC50: 268.2 µM), the 1.44 times higher than ascorbic acid (IC50: 386.5 μM). Binding mode studies demonstrated that the carbonyl oxygen of Cyrene™ coordinates with both copper ions. Surprisingly, both hydroxyl groups of Cyrene gem-diol perform a monodentate binding mode with both copper ions, at similar distances. This fact suggests that both compounds could have a similar binding mode and, as consequence, similar biological activities in tyrosinase inhibition assays and anti-browning activities.
Collapse
Affiliation(s)
- Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Joanna Szulc
- Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| | - Jéssica Alves Nunes
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, AC Simões Campus, Lourival Melo Mota Avenue, s/n, 57072-970 Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, AC Simões Campus, Lourival Melo Mota Avenue, s/n, 57072-970 Maceió, Alagoas, Brazil
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
7
|
He M, Zhang J, Li N, Chen L, He Y, Peng Z, Wang G. Synthesis, anti-browning effect and mechanism research of kojic acid-coumarin derivatives as anti-tyrosinase inhibitors. Food Chem X 2024; 21:101128. [PMID: 38292671 PMCID: PMC10826612 DOI: 10.1016/j.fochx.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Thirteen kojic acid-coumarin derivatives were synthesized using the principle of molecular hybridization, and their structures were characterized by 1H NMR, 13C NMR, and HRMS. In vitro enzyme inhibition experiments showed that all newly synthesized derivatives have excellent inhibition of tyrosinase (TYR) activity. As a mixed inhibitor, compound 6f has the strongest activity, with an IC50 value of 0.88 ± 0.10 µM. Multispectral experiments have confirmed that the mode of action of compound 6f on TYR was static quenching. In addition, compound 6f formed a new complex with TYR, which increased the hydrophobicity of the enzyme microenvironment, reduced the content of the α-helix in the enzyme, and changed the secondary structure. The experimental results showed that compound 6f effectively inhibited the browning of lotus root slices and had low cytotoxicity. Therefore, compound 6f is believed to have great development potential as a TYR inhibitor in the food industry.
Collapse
Affiliation(s)
- Min He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jinfeng Zhang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Na Li
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Chen
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Hassanuddin NA, Normaya E, Ismail H, Iqbal A, Piah MBM, Abd Hamid S, Ahmad MN. Methyl 4-pyridyl ketone thiosemicarbazone (4-PT) as an effective and safe inhibitor of mushroom tyrosinase and antibrowning agent. Int J Biol Macromol 2024; 255:128229. [PMID: 37981274 DOI: 10.1016/j.ijbiomac.2023.128229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Enzymatic browning is of concern as it can affect food safety and quality. In this study, an effective and safe tyrosinase inhibitor and anti-browning agent, methyl 4-pyridyl ketone thiosemicarbazone (4-PT), was synthesised and characterised using Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The vibrational frequencies of 4-PT were studied theoretically using vibrational energy distribution analysis (VEDA). Density functional theory (DFT) was applied to elucidate its chemical properties, including the Mulliken atomic charges, molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM) and reduced density gradient non-covalent interactions (RDG-NCIs). Moreover, 4-PT was compared with kojic acid in terms of its effectiveness as a tyrosinase inhibitor and anti-browning agent. The toxicity and physicochemical properties of 4-PT were predicted via ADME evaluation, which proved that 4-PT is safer than kojic acid. Experimentally, 4-PT (IC50 = 5.82 μM, browning index (10 days) = 0.292 ± 0.002) was proven to be an effective tyrosinase inhibitor and anti-browning agent compared to kojic acid (IC50 = 128.17 μM, browning index (10 days) = 0.332 ± 0.002). Furthermore, kinetic analyses indicated that the type of tyrosinase inhibition is a mixed inhibition, with Km and Vmax values of 0.85 mM and 2.78 E-09 μM/s, respectively. Finally, the mechanism of 4-PT for tyrosinase inhibition was proven by 1D, second derivative and 2D IR spectroscopy, molecular docking and molecular dynamic simulation approaches.
Collapse
Affiliation(s)
- Nur Amanina Hassanuddin
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Hakimah Ismail
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Science, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohd Bijarimi Mat Piah
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia
| | - Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Lab (ETRL), Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Pahang, Malaysia; Sustainable Nanotechnology and Computational Modelling (SuNCoM) Research Group, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
9
|
Min X, Lu L, Xu X, Wen Y, Zheng X. Investigation on the inhibition mechanism and binding behavior of paeonol to tyrosinase and its anti-browning property by multi-spectroscopic and molecular docking methods. Int J Biol Macromol 2023; 253:126962. [PMID: 37722636 DOI: 10.1016/j.ijbiomac.2023.126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Paeonol, as one effective tyrosinase inhibitor, had been used as food preservative and clinical medication for skin disorders. In this study, the inhibition mechanism and binding behavior of paeonol to tyrosinase and its anti-browning property were investigated using multi-spectroscopic and molecular docking methods. Activity assay and kinetic results confirmed paeonol as a reversible mixed-type tyrosinase inhibitor. Results of the mechanistic studies were clarified using fluorescence quenching, synchronous fluorescence, CD spectra and 3D fluorescence, and showed that the binding of paeonol to tyrosinase might change the chromophore microenvironment and conformation of tyrosinase to inhibit enzyme catalytic activity. Molecular docking results revealed the detailed binding between paeonol and tyrosinase. Moreover, paeonol could prevent the browning of fresh-cut apples, as well as inhibiting PPO and POD activities and increasing APX activity. All above findings established a reliable basis for the inhibitory mechanism of paeonol against tyrosinase and therefore contributed to its application in anti-browning.
Collapse
Affiliation(s)
- Xiaofeng Min
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Li Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Yi Wen
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan 825403, China.
| | - Xi Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
10
|
Xu Y, Ma CY, Sun SC, Zhang C, Wen JL, Yuan TQ. Fractionation and evaluation of light-colored lignin extracted from bamboo shoot shells using hydrated deep eutectic solvents. BIORESOURCE TECHNOLOGY 2023; 387:129679. [PMID: 37579860 DOI: 10.1016/j.biortech.2023.129679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this study, light-colored lignin was extracted from bamboo shoot shells (BSS) using a hydrated deep eutectic solvent (DES) pretreatment. The hydrated DES used in pretreatment consist of formic acid, benzyl triethylammonium chloride (BTEAC) and water. The pretreatment using a hydrated DES containing 30% water (H30) demonstrate efficient delignification (82.9%). Additionally, the hydrated DES protected the β-O-4 linkage from excessive cleavage and recondensation as well as keep the light-colored of lignin. Moreover, the hydrated DES extracted lignin exhibits superior antioxidant performance and tyrosinase inhibitory capacity compared to the control. Notably, incorporating 5% lignin of H30-extracted lignin into a commercial suncream led to a remarkable enhancement of the SPF value, elevating from 14.8 to 32.6. In summary, the proposed hydrated DES pretreatment method offers significant benefits for extracting light-colored lignin, thereby promoting the multifunctional application of lignin in cosmetics.
Collapse
Affiliation(s)
- Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
11
|
He M, Fan M, Yang W, Peng Z, Wang G. Novel kojic acid-1,2,4-triazine hybrids as anti-tyrosinase agents: Synthesis, biological evaluation, mode of action, and anti-browning studies. Food Chem 2023; 419:136047. [PMID: 37018861 DOI: 10.1016/j.foodchem.2023.136047] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
A class of new kojic acid hybrids (7a-7o) bearing a 1,2,4-triazine moiety were prepared, and their inhibitory activities and mechanism on tyrosinase were investigated. All derivatives showed good to excellent anti-tyrosinase activity with IC50 values ranging from 0.34 ± 0.06 μM to 8.44 ± 0.73 μM. In kinetic study, compound 7m was a mixed-type inhibitor with Ki and Kis of 0.73 and 1.27 μM, respectively. The interaction mechanism toward tyrosinase of compound 7m was further elaborated in combination with molecular docking and various spectral techniques. The results showed that compound 7m could change the secondary structure of tyrosinase to reduce its catalytic activity. Anti-browning assays demonstrated that 7m inhibited the browning of bananas effectively during storage. What's more, 7m was found to have low cytotoxicity in vitro. In conclusion, compound 7m has the potential to be applied as an anti-browning agent.
Collapse
|
12
|
Zhou Q, Wu Y, Deng J, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial metabolic engineering enables high yield production of α-arbutin from sucrose by biocatalysis. Appl Microbiol Biotechnol 2023; 107:2897-2910. [PMID: 37000229 DOI: 10.1007/s00253-023-12496-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
α-Arbutin has been widely used as a skin-whitening ingredient. Previously, we successfully produced α-arbutin via whole-cell biocatalysis and found that the conversion rate of sucrose to α-arbutin was low (~45%). To overcome this issue, herein, we knocked out the genes of enzymes related to the sucrose hydrolysis, including sacB, sacC, levB, and sacA. The sucrose consumption was reduced by 17.4% in 24 h, and the sucrose conversion rate was increased to 51.5%. Furthermore, we developed an inducible protein degradation system with Lon protease isolated from Mesoplasma florum (MfLon) and proteolytic tag to control the PfkA activity, so that more fructose-6-phosphate (F6P) can be converted into glucose-1-phosphate (Glc1P) for α-arbutin synthesis, which can reduce the addition of sucrose and increase the sucrose conversion efficiency. Finally, the pathway of F6P to Glc1P was enhanced by integrating another copy of glucose 6-phosphate isomerase (Pgi) and phosphoglucomutase (PgcA); a high α-arbutin titer (~120 g/L) was obtained. The sucrose conversion rate was increased to 60.4% (mol/mol). In this study, the substrate utilization rate was boosted due to the attenuation of its hydrolysis and the assistance of the intracellular enzymes that converted the side product back into the substrate for α-arbutin synthesis. This strategy provides a new idea for the whole-cell biocatalytic synthesis of other products using sucrose as substrate, especially valuable glycosides.Key points The genes of sucrose metabolic pathway were knocked out to reduce the sucrose consumption. The by-product fructose was reused to synthesize α-arbutin. The optimized whole-cell system improved sucrose conversion by 15.3%.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Wuxi Food Safety Inspection and Test Center & Technology Innovation Center of Special Food for State Market Regulation, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jieying Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
New Insights into the Inhibition of Hesperetin on Polyphenol Oxidase: Inhibitory Kinetics, Binding Characteristics, Conformational Change and Computational Simulation. Foods 2023; 12:foods12040905. [PMID: 36832979 PMCID: PMC9957399 DOI: 10.3390/foods12040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The inhibitory activity of hesperetin on polyphenol oxidase (PPO) and their interaction characteristics were investigated using multiple spectroscopic methods and computational simulation. Hesperetin, a mixed inhibitor, reversibly inhibited PPO activity, and its half-maximum inhibitory concentration (IC50) values on monophenolase and diphenolase were 80.8 ± 1.4 μM and 776.0 ± 15.5 μM, respectively. Multivariate curve resolution-alternate least squares (MCR-ALS) analysis suggested PPO interacted with hesperetin and formed PPO-hesperetin complex. Hesperetin statically quenched PPO's endogenous fluorescence, and hydrophobic interactions mainly drove their binding. Hesperetin affected the polarity of the microenvironment around the Trp residues in PPO, but had no effect on that around Tyr residues. Circular dichroism (CD) results showed that hesperetin increased α-helix content and decreased β-fold and random coil contents, thus tightening PPO's structure. Molecular docking showed that hesperetin entered the hydrophobic cavity of PPO, bound near the dinuclear copper active center, interacted with Val283, Phe264, His85, Asn260, Val248, and His263 via hydrophobic interactions, formed hydrogen bonds with Met280, His89, and His259 residues and also interacted with Phe292, His61, Phe90, Glu256, His244, Asn260, Phe264, and Gly281 via van der Waals forces. The molecular dynamics simulation results also demonstrated that the addition of hesperetin reduced the stability and hydrophobicity of PPO and increased PPO's structural denseness. Thus, the inhibition of hesperetin on PPO may be because hesperetin bound near the active center of PPO, interacted with the surrounding residues, occupied the binding site for substrate, and induced the changes in PPO's secondary structure, thus inhibiting the catalytic activity of PPO. This study may provide novel views for the inhibition of hesperetin on PPO and theoretical guidance for developing flavonoids as new and efficient PPO inhibitors.
Collapse
|
14
|
Gao X, Wu W, Chen H, Niu B, Han Y, Fang X, Chen H, Liu R, Gao H. Nitric oxide treatment delays quality deterioration and enzymatic browning of
Agaricus bisporus
via reactive oxygen metabolism regulation. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Affiliation(s)
- Xiaoqian Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest
| |
Collapse
|
15
|
Peng Z, Wang G, He Y, Wang JJ, Zhao Y. Tyrosinase inhibitory mechanism and anti-browning properties of novel kojic acid derivatives bearing aromatic aldehyde moiety. Curr Res Food Sci 2022; 6:100421. [PMID: 36605465 PMCID: PMC9807860 DOI: 10.1016/j.crfs.2022.100421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Kojic acid-aromatic aldehydes 6a-6m were synthesized and screened for their anti-tyrosinase activities. These compounds showed potently anti-tyrosinase activity with IC50 values in the range of 5.32 ± 0.23 to 77.89 ± 3.36 μM compared with kojic acid (IC50 = 48.05 ± 3.28 μM). Thereinto, compound 6j with 3-fluorine and 4-aldehyde substitutions showed the most potent anti-tyrosinase activity (IC50 = 5.32 ± 0.23 μM). Enzyme kinetic study revealed that 6j is a noncompetitive tyrosinase inhibitor (Ki = 2.73 μM). The action mechanism of 6j was evaluated by fluorescence spectrum quenching, molecular docking, 1H NMR titration, etc. The anti-browning assay showed that 6j could delay the enzymatic browning of fresh-cut apples. Besides, the cell viability assay proved that 6j had a good safety profile as an anti-browning agent. Hence, these results identify a new class of anti-tyrosinase and anti-browning agents for further investigation in the food industry.
Collapse
Affiliation(s)
- Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
- Corresponding author. College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- Corresponding author.
| |
Collapse
|
16
|
Wang Q, Xiang X, Xie Y, Wang K, Wang C, Nie X, Wang P. Maillard reaction between oligopeptides and reducing sugar at body temperature: The putative anti-glycation agents. Front Nutr 2022; 9:1062777. [DOI: 10.3389/fnut.2022.1062777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Type 2 Diabetes mellitus (T2DM) is one of the most common chronic multifactorial diseases, which is associated with the increased concentration of glucose in the blood. Therefore, the utilization of blood lowering agents is clearly a promising approach which can lead to a suppression of the evaluated blood glucose, and thus curing T2DM and other complication. In this study, we evaluated the glucose lowering effect of a varieties of amino acids (alanine and histidine), dipeptides (carnosine and α-alanine-L-histidine), and tripeptide (glutathione) by reacting with glucose, fructose, and sucrose under 37°C and pH 7.4 to mimic their reaction in physiological condition. By measuring the reduction of reactants and the formation of Maillard reaction products over the course of 21 days’ storage, we found that the glucose lowering effect of carnosine was better than the counterparts. The histidine residue in carnosine may contribute to its glucose lowing effect while β-amino acid β-alanine residue could facilitate the glucose lowering effect of carnosine by maintaining its chemical stability during the storage. These results may open up new avenues for the applications of bioactive peptide carnosine as a natural blood sugar lowering agent to control T2DM.
Collapse
|
17
|
Characterization, Stability, and Antibrowning Effects of Oxyresveratrol Cyclodextrin Complexes Combined Use of Hydroxypropyl Methylcellulose. Foods 2022; 11:foods11162471. [PMID: 36010470 PMCID: PMC9407340 DOI: 10.3390/foods11162471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Oxyresveratrol (Oxy) has attracted much attention by employing it as an antibrowning agent in fruits and vegetables. In this study, the formation of cyclodextrin (CD) inclusion exhibited a certain protective effect on Oxy oxidative degradation, while hydroxypropyl-β-cyclodextrin (HP–β-CD) inclusion complex showed stronger stabilizing effects than those of β-cyclodextrin (β-CD). The combined use of CD and hydroxypropyl methylcellulose (HPMC) greatly improved the stability of Oxy–CD inclusion complexes, with approximately 70% of the trans-Oxy retained after 30 days of storage under light conditions at 25 °C. The results of the interaction between CD and Oxy determined by phase solubility studies and fluorescence spectroscopic analysis showed that the binding strength of CD and Oxy increased in the presence of HPMC. Moreover, Oxy combined with ascorbic acid and HPMC showed an excellent antibrowning effect on fresh-cut apple slices during the 48 h test period, indicating that adding HPMC as the third component will not influence the antibrowning activity of Oxy.
Collapse
|