1
|
Hou H, Yang S, Yang X, Sun W, Debrah AA, Javeria H, Tian D, Du Z. Comprehensive profiling and development of a collision cross section database for milk oligosaccharides via orthogonal UPLC-cyclic ion mobility-mass spectrometry system. Food Chem 2025; 480:143839. [PMID: 40112707 DOI: 10.1016/j.foodchem.2025.143839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Human milk oligosaccharides (HMOs) have attracted immense interest in the infant formula industry for their health benefits. Herein, we utilized liquid chromatography-cyclic ion mobility-mass spectrometry (LC-cIM-MS) to develop a robust and multidimensional HMO profiling workflow. This workflow relies on a self-built glycan library, allowing high-throughput searching of oligosaccharides. cIM-MS demonstrated high resolving power in discriminating glycan isomers and increasing peak capacity. This also facilitated the accurate elucidation of most oligosaccharides at sequence levels. A remarkably diverse milk oligosaccharide profile (n = 98) was observed and enabled the discovery of distinctive chromatographic retention patterns. To provide supplementary selectivity for future routine assignment in the absence of standards, we further developed a comprehensive database of experiment-derived traveling wave collision cross section in nitrogen (TWCCSN2) for 98 HMOs, including isomer-resolved TWCCSN2 values. Finally, the profile revealed 64 oligosaccharides unique to human milk compared with infant formula, indicating the potential ingredients for formula improvement.
Collapse
Affiliation(s)
- Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuya Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Wenjun Sun
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Augustine Atta Debrah
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta, GA 30332, United States
| | - Huma Javeria
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dingwei Tian
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Hou H, Yang S, Yang X, Sun W, Javeria H, Khan J, Du Z. Sensitive and high-throughput isomer-specific analysis of human milk oligosaccharides using UPLC-MS/MS and its application to secretor status assignment. Carbohydr Polym 2025; 352:123154. [PMID: 39843059 DOI: 10.1016/j.carbpol.2024.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/08/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
Human milk oligosaccharides (HMOs) are now the principal component of the latest infant formula generation. However, it is challenging to separate and quantify highly heterogeneous isomers when analyzing HMOs. Here, we developed a high-throughput isomer-resolved quantification method for 21 native HMOs based on ultrahigh-performance liquid chromatography-mass spectrometry-multiple reaction monitoring (UPLC-MS-MRM) technology. High-resolution cyclic ion mobility-mass spectrometry technology was applied to distinguish HMO isomers and identify specific ion pairs for quantification to solve the measurement challenge of HMOs without available standards. Simultaneously, nine HMO standards were used to create universal calibration curves to quantify those without standards. This MRM approach features wide isomer coverage (seven series of isomers), short analysis time (12 min), high sensitivity (ng/L level detection limit), and a broad 5-order-of-magnitude quantitation range. After that, the technique was used on 58 Chinese human milk samples, which showed that the three genotype milk groups had different HMO profiles at the isomer level. Four crucial fucosylated HMOs were identified as markers to rapidly assign secretor status. Moreover, correlations analysis unveiled a co-regulatory relationship among Fuc-(α1-3/4), Fuc-(α1-2), and sialylated glycanforms. Our research offers a comprehensive solution for isomeric glycome profiling, and provides a crucial reference for designing precise nutrition formula for infants.
Collapse
Affiliation(s)
- Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuya Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Wenjun Sun
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Huma Javeria
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jehangir Khan
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenxia Du
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Peng Z, Siziba LP, Mank M, Stahl B, Gonsalves J, Wernecke D, Rothenbacher D, Genuneit J. Profiles of 71 Human Milk Oligosaccharides and Novel Sub-Clusters of Type I Milk: Results from the Ulm SPATZ Health Study. Nutrients 2025; 17:280. [PMID: 39861410 PMCID: PMC11767774 DOI: 10.3390/nu17020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Although approximately 160 human milk oligosaccharides (HMOs) have been identified, current studies on HMO quantitation are limited to the 10-19 most abundant HMOs. We assessed the variations in the relative concentrations of 71 HMO structures over lactation in human milk samples by an advanced liquid chromatography-mass spectrometry approach. METHODS Samples were collected from 64 mothers at 6 weeks, 6 months, and 12 months of lactation in the Ulm SPATZ Health Study, a German birth cohort. In this longitudinal study, we fitted linear mixed-effect models to analyze changes in the log2-transformed and standardized HMO concentration over time. Based on the profile of 71 HMOs, we also fitted a group-based multi-trajectory (GBMT) model to cluster mothers secreting cluster type I milk, who account for the majority of lactating mothers. RESULTS We found that 52 HMOs had a decreasing trend (regression coefficients ranging from -1.41 to -0.17) and 9 had an increasing trend (regression coefficients ranging from 0.25 to 0.64) during lactation, and the findings were statistically significant after multiple testing corrections. Using human milk samples of 49 mothers with type I milk, we further identified two novel sub-clusters with distinct longitudinal trajectories of concentrations of 71 HMOs during lactation: Type I-a (N = 20) and I-b (N = 29). These sub-clusters were not associated with maternal non-genetic characteristics. CONCLUSIONS Our findings extend existing knowledge about the structural diversity of HMOs and their variations over lactation. These may pave the way to investigate the potential nutritional benefits of various HMOs on infant health and early life development in the future.
Collapse
Affiliation(s)
- Zhuoxin Peng
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
| | - Linda P. Siziba
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
| | - Marko Mank
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
| | - Bernd Stahl
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
- Department of Chemical Biology & Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - John Gonsalves
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
| | - Deborah Wernecke
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 89075 Ulm, Germany
| | - Dietrich Rothenbacher
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 89075 Ulm, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 04103 Leipzig, Germany
| |
Collapse
|
4
|
Ning Y, Xun Y, Fong B, McJarrow P, Ma L, Jan Mohamed HJ, Dong H, Yuan Q. Analysis of twelve human milk oligosaccharides over fifteen months post-partum in human milk from Chinese mothers. Heliyon 2024; 10:e39293. [PMID: 39640655 PMCID: PMC11620220 DOI: 10.1016/j.heliyon.2024.e39293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Human milk Oligosaccharides (HMOs) are a major component in human milk and recognized to play an important role in modulating gut microbiota, intestinal cell response, and the development of the brain and immune system. While HMOs levels from Chinese mothers across different regions of China have been reported, data from Hebei are lacking. Twelve HMOs were measured from a cross-section of Hebei Han mothers over a 15-month lactation period. The average total of the 12 measured HMOs was 4872 ± 1902 mg/L, similar to that reported for Han mothers from other Chinese regions. Hebei Han mothers had much lower LNnT (59.0 ± 53.1 mg/L), LNFP II (257.5 ± 211.0 mg/L) and LNFP III (149.9 ± 121.7 mg/L) levels and higher 3FL levels (1875.2 ± 1065.3 mg/L) compared to other regional Chinese mother cohorts. The distribution of secretor and Lewis status for this Hebei mother cohort was measured at 68.5 %, 21.9 %, 8.2 % and 1.4 % respectively for Se+Le+, Se-Le+, Se+Le- and Se-Le- respectively. The results from this study suggest that location has influence over the HMOs concentration.
Collapse
Affiliation(s)
- Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| | - Yiping Xun
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| | - Bertram Fong
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag, 11029, Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag, 11029, Palmerston North 4442, New Zealand
| | - Lin Ma
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag, 11029, Palmerston North 4442, New Zealand
| | - Hamid Jan Jan Mohamed
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Huanzhe Dong
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| | - Qingbin Yuan
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Astono J, Huang YP, Sundekilde UK, Barile D. Human milk oligosaccharide profiles remain unaffected by maternal pre-pregnancy body mass index in an observational study. Front Nutr 2024; 11:1455251. [PMID: 39479194 PMCID: PMC11523534 DOI: 10.3389/fnut.2024.1455251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are important carbohydrates in human milk that infants cannot digest, acting as prebiotics linked to infant health. The risk of childhood obesity increases with maternal obesity, potentially mediated through the gut microbiota affected by the available HMOs. Studies on whether maternal obesity affects HMO abundance, yield conflicting results. This study aimed to investigate the HMO profile and its association with maternal obesity measured by pre-pregnancy body mass index (BMI) and infant anthropometrics. The results were discussed in the context of existing literature. 90 human milk samples were collected at 3 months postpartum from mothers in three BMI-groups: 32 normal weight (BMI: 18.5-24.99 kg/m2), 34 overweight (BMI: 25-30 kg/m2), and 24 obese (BMI > 30 kg/m2). The samples were analyzed using nano liquid chromatography chip quadrupole time-of-flight mass spectrometry yielding 51 HMO structures and isomers. Their peak areas were integrated and normalized to determine relative abundances. Univariate and multivariate analysis showed associations between relative HMO abundance and donors' secretor status and specific infant anthropometric variables, but not with maternal pre-pregnancy BMI. This study does not support the hypothesis that maternal overweight influences the HMO profile and highlights the importance of reporting results despite absence of significant correlations.
Collapse
Affiliation(s)
- Julie Astono
- Department of Food Science, Aarhus University, Aarhus, Denmark
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | | | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Zhu L, Peng X, Li H, Luo T, Wang J, Gao Y, Deng Z, Li J, Li W, Zheng L, Zhang B. Systematic Characterization of the Oligosaccharide Profile of Human Milk in Rural Areas of Central China: Quantitative Tracking of Human Milk Oligosaccharide Composition during 12 Months of Lactation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39359140 DOI: 10.1021/acs.jafc.4c07225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
This study investigates changes in human milk oligosaccharide (HMO) composition over a 12 month breastfeeding period in rural central China. The HMO profiles of 97 mothers were analyzed by graphitized carbon liquid chromatography-electrospray ionization-mass spectrometry. This method was simple to prepare samples and can simultaneously and absolutely quantify at least 20 neutral and acidic HMOs. All mothers were classified into four milk groups based on the presence or absence of specific α-1,2 and α-1,4-fucosylated HMOs. The main oligosaccharides in milk groups I and II were 2'-FL, LDFT, LNFP-I, and LNDFH-I, while LNT, 3-FL, LNFP-II, LNFP-V, LNDFH-II, and DFLNH-b were predominant in milk groups III and IV. Additionally, the lactation period was the primary factor affecting the concentration of individual HMOs. The concentrations of most HMOs decreased with lactation and stabilized after 180 days. However, the concentrations of 3-FL, LDFT, and LNDFH II increased gradually over the lactation period, and the concentration of 3'-SL decreased during early lactation (5-180 days) but increased during later lactation (180-365 days). Furthermore, Spearman correlation analysis revealed that maternal factors and infant factors may also affect the concentration of various HMOs. These findings provide fundamental insights for the development of a comprehensive human milk database.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Yu Gao
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Wei Li
- Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| |
Collapse
|
7
|
Jiang Y, Sun T, Lin Y, Liu M, Wang X. Is it possible to obtain substitutes for human milk oligosaccharides from bovine milk, goat milk, or other mammal milks? Compr Rev Food Sci Food Saf 2024; 23:e70018. [PMID: 39302160 DOI: 10.1111/1541-4337.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Considering the current level of chemical and biological synthesis technology, it was a sensible selection to obtain milk oligosaccharides (MOs) from other mammals as the potential substitute for human MOs (HMOs) that possessed various structural features in the infant formula. Through a comprehensive analysis of the content, structure, and function of MOs in six distinct varieties of mammal milk, it has been shown that goat milk was the most suitable material for the preparation as a human milk substitute. Goat MOs (GMOs) had a relatively high content and diverse structural features compared to those found in other mammalian milks. The concentration of GMOs in colostrum ranged from 60 to 350 mg/L, whereas in mature milk, it ranged from 200 to 24,00 mg/L. The acidic oligosaccharides in goat milk have attracted considerable attention due to their closeness in acidic content and structural diversity with HMOs. Simultaneously, it was discovered that some structures, like N-glycolylneuraminic acid, were found to have a certain content in GMOs and served essential functional properties. Moreover, studies focused on the extraction of MOs from goat milk indicated that the production of GMOs on an industrial scale was viable. Furthermore, it is imperative to do further study on GMOs to enhance the preparation process, discover of new MOs structures and bioactivity evaluation, which will contribute to the development of both the commercial production of MOs and the goat milk industry.
Collapse
Affiliation(s)
- Yishan Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yihan Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- College of Enology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong Province, China
| |
Collapse
|
8
|
Mokhtari P, Schmidt KA, Zamanian H, Babaei M, Machle CJ, Trifonova D, Alderete TL, Holzhausen EA, Ottino-González J, Chalifour BN, Jones RB, Furst A, Yonemitsu C, Bode L, Goran MI. Maternal Diet Associated with Oligosaccharide Abundances in Human Milk from Latina Mothers. Nutrients 2024; 16:1795. [PMID: 38931150 PMCID: PMC11206877 DOI: 10.3390/nu16121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Growing evidence indicates that human milk oligosaccharides (HMOs) are important bioactive compounds that enhance health and developmental outcomes in breastfed babies. Maternal dietary intake likely contributes to variation in HMO composition, but studies identifying diet-HMO relationships are few and inconsistent. This study aimed to investigate how the maternal intake of macronutrients and micronutrients-specifically proteins, fats, vitamins, and minerals-associated with HMOs at 1 month (n = 210), 6 months (n = 131), and 12 months postpartum (n = 84). Several associations between maternal dietary factors and HMO profiles were identified utilizing partial correlation analysis. For example, maternal free sugar (rho = -0.02, p < 0.01), added sugar (rho = -0.22, p < 0.01), and sugary sweetened beverage (rho = -0.22, p < 0.01) intake were negatively correlated with the most abundant HMO, 2'-fucosyllactose (2'-FL), at 1 month, suggesting that higher sugar consumption was associated with reduced levels of 2'-FL. Further, vitamins D, C, K, and the minerals zinc and potassium were positively correlated with 2'-FL at 1 month (pAll < 0.05). For the longitudinal analysis, a mixed-effects linear regression model revealed significant associations between maternal vitamin intake and HMO profiles over time. For example, for each unit increase in niacin intake, there was a 31.355 nmol/mL increase in 2'-FL concentration (p = 0.03). Overall, the results provide additional evidence supporting a role for maternal nutrition in shaping HMO profiles, which may inform future intervention strategies with the potential of improving infant growth and development through optimal HMO levels in mothers' milk.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Hashem Zamanian
- The Saban Research Institute (TSRI) Data Science, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Christopher J. Machle
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Diana Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
| | - Tanya L. Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Jonatan Ottino-González
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| | - Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (D.T.); (E.A.H.); (B.N.C.)
| | - Roshonda B. Jones
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (T.L.A.); (R.B.J.)
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA 92123, USA; (A.F.); (C.Y.); (L.B.)
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (P.M.); (K.A.S.); (M.B.); (C.J.M.); (J.O.-G.)
| |
Collapse
|
9
|
Mao S, Zhao A, Jiang H, Yan J, Zhong W, Xun Y, Zhang Y. Patterns of Human Milk Oligosaccharides in Mature Milk Are Associated with Certain Gut Microbiota in Infants. Nutrients 2024; 16:1287. [PMID: 38732534 PMCID: PMC11085179 DOI: 10.3390/nu16091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother-infant dyads. Breast milk and infant faecal samples were collected and tested. With milk 2'-fucosyllactose, difucosyllactose, and lacto-N-fucopentaose-I as biomarkers, we divided the mothers into secretor and non-secretor groups. HMO patterns were extracted using principal component analysis. The majority (70.7%) of mothers were categorised as secretor and five different HMO patterns were identified. After adjustment, the infants of secretor mothers exhibited a lower relative abundance of Bifidobacterium bifidum (β = -0.245, 95%CI: -0.465~-0.025). An HMO pattern characterised by high levels of 3-fucosyllactose, lacto-N-fucopentaose-III, and lacto-N-neodifucohexaose-II was positively associated with the relative abundance of Bifidobacterium breve (p = 0.014), while the pattern characterised by lacto-N-neotetraose, 6'-sialyllactose, and sialyllacto-N-tetraose-b was negatively associated with Bifidobacterium breve (p = 0.027). The pattern characterised by high levels of monofucosyl-lacto-N-hexaose-III and monofucosyl-lacto-N-neohexaose was positively associated with Bifidobacterium dentium (p = 0.025) and Bifidobacterium bifidum (p < 0.001), respectively. This study suggests that HMO patterns from mature breast milk were associated with certain gut microbiota of breastfed infants.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.M.); (W.Z.)
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China;
| | - Hua Jiang
- School of Nursing, Peking University, Beijing 100091, China;
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Wuxian Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.M.); (W.Z.)
| | - Yiping Xun
- Junlebao Dairy Joint Laboratory of Breast Milk Science and Life Health, Peking University, Beijing 100191, China;
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (S.M.); (W.Z.)
- Junlebao Dairy Joint Laboratory of Breast Milk Science and Life Health, Peking University, Beijing 100191, China;
| |
Collapse
|
10
|
Hou H, Wang M, Yang S, Yang X, Sun W, Sun X, Guo Q, Debrah AA, Zhenxia D. Evaluation of Prebiotic Glycan Composition in Human Milk and Infant Formula: Profile of Galacto-Oligosaccharides and Absolute Quantification of Major Milk Oligosaccharides by UPLC-Cyclic IM-MS and UPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7980-7990. [PMID: 38562102 DOI: 10.1021/acs.jafc.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Prebiotic oligosaccharides have attracted immense interest in the infant formula (IF) industry due to their unique health benefits for infants. There is a need for the reasonable supplementation of prebiotics in premium IF products. Herein, we characterized the profile of galacto-oligosaccharides (GOS) in human milk (HM) and IF using ultrahigh-performance liquid chromatography-cyclic ion mobility-mass spectrometry (UPLC-cIM-MS) technique. Additionally, we further performed a targeted quantitative analysis of five essential HM oligosaccharides (HMOs) in HM (n = 196), IF (n = 50), and raw milk of IF (n = 10) by the high-sensitivity UPLC-MS/MS method. HM exhibited a more abundant and variable HMO composition (1183.19 to 2892.91 mg/L) than IF (32.91 to 56.31 mg/L), whereas IF contained extra GOS species and non-negligible endogenous 3'-sialyllactose. This also facilitated the discovery of secretor features within the Chinese population. Our study illustrated the real disparity in the prebiotic glycome between HM and IF and provided crucial reference for formula improvement.
Collapse
Affiliation(s)
- Haiyue Hou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyu Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuya Yang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co., Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Wenjun Sun
- Waters Technology (Beijing) Co., Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Xuechun Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Augustine Atta Debrah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Du Zhenxia
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Wang X, Liu J, Wang S, Xie Y, Liu Y, Fan J, Li Y, Lu Y, Huang L, Wang Z. Online LC-ESI-MS/MS comparative analysis of N/O-glycopatterns in human colostrum from different ethnic groups in Northwest China. Carbohydr Polym 2024; 327:121675. [PMID: 38171687 DOI: 10.1016/j.carbpol.2023.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Human milk oligosaccharides, including free oligosaccharides and glycoconjugates, exert a key role in neonatal health and development. Changes in free oligosaccharides of milk from different ethnic groups have been documented. In this study, human milk was collected from Han, Hui, and Tibetan populations in northwest China, and differences in N/O-glycome among these three ethnic groups were systematically compared using online high-performance liquid chromatography-tandem mass spectrometry. Among the 63 detected N-glycans, 35 showed significant differences between the three ethnic groups (p < 0.05). Among the 70 detected O-glycans, four neutral O-glycans and six acidic O-glycans exhibited significant differences among the three ethnic groups (p < 0.05), with six acidic O-glycans reported for the first time. Overall, the extent of milk N/O-glycosylation was higher in the Han population than in the Hui or Tibetan groups. This trend was particularly pronounced for the main sialylated N/O-glycans. Except for sulfated O-glycans, which were higher in the milk from Tibetan mothers, the other types of N/O-glycans were present in similar proportions across all ethnic groups. Understanding the composition of N/O-glycans in human milk can help research on the structure-function relationship of glycans.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jing Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutao Xie
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yipei Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiangbo Fan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yanping Li
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou 730030, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
12
|
Liu S, Mao Y, Wang J, Tian F, Hill DR, Xiong X, Li X, Zhao Y, Wang S. Lactational and geographical variation in the concentration of six oligosaccharides in Chinese breast milk: a multicenter study over 13 months postpartum. Front Nutr 2023; 10:1267287. [PMID: 37731395 PMCID: PMC10508235 DOI: 10.3389/fnut.2023.1267287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Understanding the variations of oligosaccharide in breast milk contribute to better study how human milk oligosaccharides (HMOs) play a role in health-promoting benefits in infants. Methods Six abundant HMOs, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), in breast milk collected at 0-5 days, 10-15 days, 40-45 days, 200-240 days, and 300-400 days postpartum from six locations across China were analyzed using high-performance anion-exchange chromatography-pulsed amperometric detector. Results The concentration of individual HMO fluctuated dynamically during lactational stages. The median ranges of 2'-FL, 3-FL, LNT, LNnT, 3'-SL, and 6'-SL across the five lactational stages were 935-2865 mg/L, 206-1325 mg/L, 300-1473 mg/L, 32-317 mg/L, 106-228 mg/L, and 20-616 mg/L, respectively. The prominent variation was observed in the content of 6'-SL, which demonstrates a pattern of initial increase followed by a subsequent decrease. Among the five lactational stages, the transitional milk has the highest concentration, which was 31 times greater than the concentration in mature milk at 300-400 days postpartum, where the content is the lowest. Geographical location also influenced the content of HMOs. LNT and LNnT were the highest in mature milk of mothers from Lanzhou among the six sites at 40-240 days postpartum. Breast milks were categorized into two groups base on the abundance of 2'-FL (high and low). There was no significant difference in the proportions of high and low 2'-FL phenotypes among the six sites, and the percentages of high and low 2'-FL phenotypes were 79% and 21%, respectively, across all sites in China. Discussion This study provided a comprehensive dataset on 6 HMOs concentrations in Chinese breast milk during the extended postpartum period across a wide geographic range and stratified by high and low 2'-FL phenotypes.
Collapse
Affiliation(s)
- Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yingyi Mao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - David R. Hill
- Abbott Nutrition Research & Development Center, Columbus, OH, United States
| | - Xiaoying Xiong
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Yanrong Zhao
- Abbott Nutrition Research & Development Center, Shanghai, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Wang X, Pei J, Hao D, Zhang Y, Liao Y, Wang Q, Fan J, Huang L, Wang Z. Online PGC-LC-ESI-MS/MS comparative analysis of variations in human milk O-glycopatterns from different secretor status. Carbohydr Polym 2023; 315:121004. [PMID: 37230641 DOI: 10.1016/j.carbpol.2023.121004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/22/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
O-glycome is one of the important components of glycoconjugates in human milk which is speculated to provide protective features similar to those observed in free oligosaccharides. The effects of maternal secretor status on free oligosaccharides and N-glycome in milk have been well researched and documented. Currently, milk O-glycome of secretors (Se+) and nonsecretors (Se-) was investigated through reductive β-elimination combined with porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry. A total of 70 presumptive O-glycan structures were identified, of which 25 O-glycans (including 14 sulfated O-glycans) were reported for the first time. Notably, 23 O-glycans exhibited significant differences between Se+ and Se- samples (p < 0.05). Compared to Se- group, the O-glycans of the Se+ group was two times more abundant in the total glycosylation, sialylation, fucosylation, and sulfation (p < 0.01). In conclusion, approximately one-third of the milk O-glycosylation was influenced by maternal FUT2-related secretor status. Our data will lay a foundation for the study of O-glycans structure-function relationship.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiahuan Pei
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Daokuan Hao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuyang Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yujie Liao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiangbo Fan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
14
|
Li R, Zhou Y, Xu Y. Comparative analysis of oligosaccharides in the milk of human and animals by using LC-QE-HF-MS. Food Chem X 2023; 18:100705. [PMID: 37397214 PMCID: PMC10314177 DOI: 10.1016/j.fochx.2023.100705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
The complex oligosaccharides (OS) in different milk are more difficult to detect and complicated to analyze as their enormous structural complexity. UPLC-QE-HF-MS was supposed to be a highly effective method for OS identification. In present study, 70 human milk oligosaccharides (HMOs), 14 bovine milk oligosaccharides (BMOs), 23 goat milk oligosaccharides (GMOs) and 24 rat milk oligosaccharides (RMOs) were detected by using UPLC-QE-HF-MS, respectively. There were highly differences in number and composition between the four milk OS. 14 neutral and 3 acidic OS were firstly found in rat milk. The composition and abundances of RMOs were might more similar to that of HMOs, comparing with BMOs and GMOs. The similarity between HMOs and RMOs might provide theoretical basis for better application of rats in biological/biomedical studies of HMOs as models. The BMOs and GMOs were expected to be suitable for applications in medical and functional foods as a promising bioactive molecular.
Collapse
Affiliation(s)
- Rui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, No. 38 Xueyuan Road, Beijing 100083, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, No. 38 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
15
|
Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China. Nutrients 2022; 14:nu14194131. [PMID: 36235783 PMCID: PMC9570563 DOI: 10.3390/nu14194131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are a group of breast milk carbohydrates exerting pivotal benefits for breastfed infants. Whether maternal diet is associated with breastmilk HMO composition has not been well-characterized. OBJECTIVES We investigated the associations between dietary nutrient intake and HMO concentrations in a general pregnant and postpartum population. METHODS A total of 383 breast milk samples and the corresponding food frequency questionnaires during 0-400 postpartum days from 277 mothers were collected. Six different HMOs were detected in mothers' milk. The correlation between nutrients and HMOs were analyzed using a linear mixed-effects model. RESULTS We found plant nutrients, vitamin A, vitamin C and vegetables as positive predictors of 3-fucosyllactose; vitamin B1 and vitamin B2 were positive predictors for 2'-fucosyllactose level and the sum of 2'-fucosyllactose and 3-fucosyllactose; tocopherol and metal elements were positive predictors for 3'-sialyllactose; and metal elements were positively associated with the sum of all the six HMOs; the milk and lactose intake was a positive predictor of lacto-N-tetraose levels and the sum of lacto-N-tetraose and lacto-N-neotetraose. CONCLUSIONS The results show that vegetables, vitamins and metal elements are dietary components positively associated with HMO concentrations.
Collapse
|