1
|
Sun J, Lian X, Wang L, Duan Z. Development and Application of a Robust Imine-Based Covalent Organic Framework for Stir Bar Sorptive Extraction of Estrogens in Environmental Water. Molecules 2024; 29:5763. [PMID: 39683920 DOI: 10.3390/molecules29235763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
A covalent organic framework (COF) based on imine was synthesized using 2,5-dihexoxyterephthalaldehyde (DHT) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as starting materials. The TAPB-DHT-COF exhibited satisfactory chemical stability, making it a promising adsorbing material for stir bar sorptive extraction (SBSE) of four estrogens, including estrone (E1), β-estradiol (E2), hexestrol (HES), and mestranol (MeEE2), in ambient water samples. The extracted analytes were subsequently analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD). A series of parameters affecting the SBSE process, such as solution pH, ionic strength, extraction time, and desorption solvent, were investigated by the controlled variable method. Under optimal conditions, the limit of detection (LODs) for the four targeted estrogens ranged from 0.06 to 0.15 µg/L, with a linear range from 0.2 to 100 µg/L. The observed enrichment factor (EF) ranged from 39 to 49, while the theoretical EF was estimated to be 50-fold. This methodology can be applied to the identification of estrogens in three environmental water samples.
Collapse
Affiliation(s)
- Jianing Sun
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xixi Lian
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Lianzhi Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Zhengchao Duan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
2
|
Hou S, Zhang M, Huo Y, Chen X, Qian W, Zhang W, Zhang S. Recent advances and applications of ionic covalent organic frameworks in food analysis. J Chromatogr A 2024; 1730:465113. [PMID: 38959656 DOI: 10.1016/j.chroma.2024.465113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Ionic covalent organic frameworks with both crystallinity and charged sites have attracted significant attention from the scientific community. The versatile textural structures, precisely defined channels, and abundant charged sites of ionic COFs offer immense potential in various areas such as separation, sample pretreatment, ion conduction mechanisms, sensing applications, catalytic reactions, and energy storage systems. This review presents a comprehensive overview of facile preparation methods for ionic covalent organic frameworks (iCOFs), along with their applications in food sample pretreatment techniques such as solid-phase extraction (SPE), magnetic solid-phase extraction (MSPE), and dispersive solid-phase extraction (DSPE). Furthermore, it highlights the extensive utilization of iCOFs in detecting various food contaminants including pesticides, contaminants from food packaging, veterinary drugs, perfluoroalkyl substances, and poly-fluoroalkyl substances. Specifically, this review critically discusses the limitations, challenges, and future prospects associated with employing iCOF materials to ensure food safety.
Collapse
Affiliation(s)
- Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Mengjiao Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yichan Huo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xin Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenping Qian
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Wenming Road 100, Luohe, Henan 462000, PR China; Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Food Laboratory of Zhongyuan, Wenming Road 100, Luohe, Henan 462000, PR China; Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
3
|
Wang B, Xu S, Li W, Liu Y, Li Z, Ma L, Xu X, Chen D. Polyaniline-coated kapok fibers for convenient in-syringe solid-phase microextraction and determination of organochlorine and pyrethroid pesticide residues in aqueous samples. Talanta 2024; 271:125706. [PMID: 38280266 DOI: 10.1016/j.talanta.2024.125706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Pesticides used in agriculture have low polarity and a tendency to accumulate in fatty tissues, posing potential risks to human health. Effective pre-treatment is crucial due to complex sample matrices and low concentrations of pesticide residues typically encountered in instrument analysis. In this study, polyaniline-coated kapok fiber (PANI-KF) was synthesized successfully using in-situ oxidative polymerization for use as sorbents in in-syringe SPME of pyrethroid pesticides (PYRs) and organochlorine pesticides (OCPs) from aqueous samples. Coating the natural KF with PANI maintained the hollow microtubular structure and fiber morphology while significantly enhancing the extraction efficiency. The extraction process was easily conducted by simply pulling and pushing the syringe plunger. The entire extraction process, utilizing 3 mg of PANI-KF, could be completed in approximately 3 min. Density functional theory results indicated that the adsorption mechanism of PANI-KF towards OCPs and PYRs mainly involved van der Waals interactions, π-π interactions, and weak hydrogen bonding interactions. With the coupling of gas chromatography-mass spectrometry, a quantification method was established that exhibited good linearities (R2 > 0.990), and relative recoveries (87.2-108.5 %). The limits of detection ranged from 0.4 to 2.0 ng mL-1 and the matrix effects were negligible (-12.3-16.4 %). The validated in-syringe SPME-GC-MS method was successfully applied to determine pesticide residues in fruit juices, oral liquids and herbal extract granules with satisfactory accuracy and precision. PANI-KF exhibits remarkable promise as a sorbent for the extraction and enrichment of pesticide residues in aqueous samples, thereby contributing to the advancement of pesticide residue determination methodologies.
Collapse
Affiliation(s)
- Bin Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - ShuangJiao Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenxuan Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Yuwei Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China
| | - Zhanwu Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Pharmacy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China.
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Xu X, Ma M, Gao J, Sun T, Guo Y, Feng D, Zhang L. Multifunctional Ni-NPC Single-Atom Nanozyme for Removal and Smartphone-Assisted Visualization Monitoring of Carbamate Pesticides. Inorg Chem 2024; 63:1225-1235. [PMID: 38163760 DOI: 10.1021/acs.inorgchem.3c03642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A multifunctional single-atom nanozyme, denoted as 3D Ni,N-codoped porous carbon (Ni-NPC), was devised that exhibits remarkable adsorption capabilities and a repertoire of enzyme mimetic functions (oxidase- and peroxidase-like). These attributes stem from the distinctive mesoporous thin-shell structure and well-dispersed Ni sites. The efficient adsorption capacity of Ni-NPC was assessed with respect to three carbamate pesticides (CMPs): metolcarb, carbaryl, and isoprocarb. Moreover, a colorimetric detection method for CMP was established based on its robust peroxidase-like catalytic activity and sequential catalytic interactions with acetylcholinesterase. Furthermore, a portable colorimetric sensor based on a hydrogel sphere integrated with a smartphone platform was devised. This sensor enables rapid, on-site, and quantitative assessment of CMP, boasting an extraordinarily low detection limit of 1.5 ng mL-1. Notably, this sensor was successfully applied to the analysis of CMP levels in lake water and vegetable samples (pakchoi and rape), propelling the progress of real-time detection technologies in food and environment monitoring.
Collapse
Affiliation(s)
- Xu Xu
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Muyao Ma
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Jiaxin Gao
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
- Center for Harbin Natural Resources Comprehensive Survey, China Geological Survey, Harbin, 150039, China
| | - Tongxin Sun
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuhan Guo
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lei Zhang
- College of Chemistry, Liaoning University, No. 66 Chongshan Middle Road, Shenyang 110036, China
| |
Collapse
|
5
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|