1
|
Sun S. Progress in the Identification and Design of Novel Antimicrobial Peptides Against Pathogenic Microorganisms. Probiotics Antimicrob Proteins 2025; 17:918-936. [PMID: 39557756 PMCID: PMC11925980 DOI: 10.1007/s12602-024-10402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The occurrence and spread of antimicrobial resistance (AMR) pose a looming threat to human health around the world. Novel antibiotics are urgently needed to address the AMR crisis. In recent years, antimicrobial peptides (AMPs) have gained increasing attention as potential alternatives to conventional antibiotics due to their abundant sources, structural diversity, broad-spectrum antimicrobial activity, and ease of production. Given its significance, there has been a tremendous advancement in the research and development of AMPs. Numerous AMPs have been identified from various natural sources (e.g., plant, animal, human, microorganism) based on either well-established isolation or bioinformatic pipelines. Moreover, computer-assisted strategies (e.g., machine learning (ML) and deep learning (DL)) have emerged as a powerful and promising technology for the accurate prediction and design of new AMPs. It may overcome some of the shortcomings of traditional antibiotic discovery and contribute to the rapid development and translation of AMPs. In these cases, this review aims to appraise the latest advances in identifying and designing AMPs and their significant antimicrobial activities against a wide range of bacterial pathogens. The review also highlights the critical challenges in discovering and applying AMPs.
Collapse
Affiliation(s)
- Shengwei Sun
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden.
| |
Collapse
|
2
|
Zhu X, Ren M, Zhang Z, Meng F, Li Z, Qin Y, Fang Y, Zhang M. Isolation and characterization of quinoa antimicrobial peptides and its effect on the microbial diversity of fresh apple juice. Food Chem 2025; 469:142536. [PMID: 39729667 DOI: 10.1016/j.foodchem.2024.142536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.25 Da to 1253.55 Da, notably, AGAAPE peptide (556.25 Da), negatively charged (-1), highly hydrophobic (50 %), with significant inhibitory effects on both Escherichia coli and Staphylococcus aureus (MIC 5 mg/mL). The antimicrobial mechanism of AGAAPE was determined to damage membrane through hydrogen-bond and hydrophobic interactions, resulting in leakage of intramembrane substances and inhibition of intracellular ATPase activity. Moreover, AGAAPE was pH resistant (pH 4-12), thermally stable (121 °C, 30 min), resistant to salt ion interference (Na+, Ca2+), and protease hydrolysis resistant (neutral protease, pepsin, trypsin). Overall, identifying AMPs from quinoa provides a promising new approach for fresh juice preservation.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mengyao Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhiwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yan Fang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
3
|
Li X, Zhang W, Yu W, Yu Y, Cheng H, Lin Y, Feng J, Zhao M, Jin Y. Cutaneous wound healing functions of novel milk-derived antimicrobial peptides, hLFT-68 and hLFT-309 from human lactotransferrin, and bLGB-111 from bovine β-lactoglobulin. Sci Rep 2025; 15:9965. [PMID: 40121253 PMCID: PMC11929754 DOI: 10.1038/s41598-025-90685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
The absence of multi-functional antimicrobial agents in clinical settings hinders cutaneous wound healing. Milk-derived antimicrobial peptides (MAPs) may be the imperative solution to wound repair, combining the dermatic curative properties of antimicrobial peptides with the biological activity of milk. Three novel MAPs, which were hLFT-68 (IAENRADAV) and hLFT-309 (GSPSGQKDLLF) identified in human milk and bLGB-111 (LDTDYKKY) identified in bovine milk in our previous work, were initially investigated for their function in wound healing. In vitro, the antibacterial activity and cellular mechanism of the MAPs were examined. It was found that they presented inhibition for Staphylococcus aureus and Escherichia coli, decreased the secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), and promoted fibroblast and keratinocyte proliferation. An infected wound model was established to evaluate the in vivo anti-inflammatory and regeneration properties of the MAPs. The wound area shrank more rapidly, and the wound inflammation was reduced by MAP treatment. Especially on days 3-5 after mouse modeling, the wound repair rate increased by up to 35%. Furthermore, it was suggested that they encouraged collagen synthesis and deposition, and tissue regeneration. The presented results indicated that MAPs accelerated the recovery of infected wounds, possessing the potential for developing wound-healing therapy.
Collapse
Affiliation(s)
- Xixian Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Wanning Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Wenhao Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Huiyuan Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Jingwen Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Dalian Medical University, No.467, Zhongshan Road, Dalian, 116023, Liaoning, China.
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No.457, Zhongshan Road, Dalian, 116023, Liaoning, China.
| |
Collapse
|
4
|
Hu Y, Liu N, Ma C, Ren D, Wang D, Shang Y, Li F, Lyu Y, Cai C, Chen L, Liu W, Yu X. The Membrane-Targeting Synergistic Antifungal Effects of Walnut-Derived Peptide and Salicylic Acid on Prickly Pear Spoilage Fungus. Foods 2025; 14:951. [PMID: 40231962 PMCID: PMC11941157 DOI: 10.3390/foods14060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Fermented walnut (FW) meal exhibits antifungal activity against Penicillium victoriae (the fungus responsible for prickly pear spoilage), which is mainly attributed to the synergistic effect of antimicrobial peptides and salicylic acid (SA). This study aimed to investigate the synergistic mechanism between YVVPW (YW-5, the peptide with the highest antifungal activity) and SA against the cell membrane of P. victoriae. Treatment enhanced prickly pear's rot rate, polyphenol concentration, and superoxide dismutase (SOD) activity by 38.11%, 8.11%, and 48.53%, respectively, while reducing the microbial count by 19.17%. Structural analyses revealed β-sheets as YW-5's predominant structure (41.18%), which increased to 49.0% during SA interaction. Molecular docking demonstrated YW-5's stronger binding to β-(1,3)-glucan synthase and membrane protein amino acids via hydrogen bonds, hydrophobic forces, and π-π conjugate interactions. Spectroscopic analyses demonstrated SA's major role in YW-5 synergy at the interface and polar head region of phospholipids, enhancing lipid chain disorder and the leakage of cell components. Malondialdehyde and SOD levels increased nearly two-fold and six-fold when treated with YW-5/SA, and YW-5 showed a more pronounced effect. Scanning electron and transmission electron microscopy confirmed that SA caused greater damage to spore morphology and cell ultrastructure. These findings support this formulation's functions as an efficient antifungal substance in fruit storage.
Collapse
Affiliation(s)
- Yue Hu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Na Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Caiqing Ma
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Difeng Ren
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Chen Cai
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Long Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Wenjing Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China; (Y.H.); (N.L.); (C.M.); (D.W.); (Y.S.); (F.L.); (Y.L.); (C.C.); (L.C.); (W.L.)
| |
Collapse
|
5
|
Tao W, Li W, Jin R, Liang D, Weng W, Lin R, Yang S. BCP4: A novel antimicrobial peptide with potent efficacy against Bacillus cereus in rice porridge. Int J Food Microbiol 2025; 429:111001. [PMID: 39631214 DOI: 10.1016/j.ijfoodmicro.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Bacillus cereus is a common foodborne pathogen that frequently contaminates rice products and produces cereulide toxins, presenting a significant risk to food safety and human health. In contrast, Bacillus subtilis is a promising source of antimicrobial peptides (AMPs). In this research, a novel AMP named BCP4 (KGKTLLQ) was discovered through the fermentation of shrimp waste with B. subtilis, which speculated that BCP4 might be generated through enzymatic hydrolysis catalyzed by endogenous enzymes naturally present in shrimp waste. BCP4 demonstrated potent antibacterial activity against B. cereus with a minimum bactericidal concentration (MBC) of 62.5 μg/mL and bacterial time-kill of 3 h. BCP4 surpassed the bactericidal efficiency of nisin (500 μg/mL), a commonly used AMP of microbial origin. BCP4 operates by causing damage to the bacterial cell wall and membrane, which allows the contents of the cell to flow out. BCP4 also penetrates the cell membrane and binds with DNA, effectively sterilizing the bacteria. Meanwhile, treatment of BCP4 with mammalian red blood cells revealed that it was nonhemolytic. Furthermore, the growth of B. cereus in rice porridge was significantly inhibited by BCP4 at a concentration of 62.5 μg/mL. This study provides a theoretical basis for using BCP4 to control B. cereus contamination.
Collapse
Affiliation(s)
- Weihong Tao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Wenjie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian 361021, China.
| |
Collapse
|
6
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
7
|
Taheri MN, Seyedjavadi SS, Goudarzi M, Ebrahimipour G, Hashemi A. Cliotide U1, a Novel Antimicrobial Peptide Isolated From Urtica Dioica Leaves. Bioinform Biol Insights 2025; 19:11779322251315291. [PMID: 39886350 PMCID: PMC11780632 DOI: 10.1177/11779322251315291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Aims Antibiotic resistance is currently a major challenge to scientists. Thus, attempts have been made to develop new compounds with antimicrobial activity. In this research, a new antimicrobial peptide with antibacterial activity was isolated from the plant Urtica dioica. Methods A new antimicrobial peptide, named cliotide U1, was purified through precipitation with ammonium sulfate and reverse-phase high-performance liquid chromatography. In silico methods analyzed the physicochemical properties of cliotide U1. The properties of the peptide, including antibacterial activity, pH stability, heat stability, cytotoxicity, and hemolytic activity, were also examined. Findings The purified peptide was composed of 35 amino acids with a hydrophobicity ratio of 63% and a net charge of + 5. The antibacterial activity of cliotide U1 was observed against gram-negative and gram-positive bacteria with a minimum inhibitory concentration (MIC) of 1 to 4 µM. Cliotide U1 had less than 2% cytotoxic activity at the MIC range against the human embryonic kidney cell line 293 with no clear hemolytic activity. The stability of cliotide U1 was preserved at various temperatures (10-60°C) and pH (6-9). Conclusion Our results demonstrated that cliotide U1 had potent antibacterial potential against gram-negative and gram-positive bacteria. Considering its properties, cliotide U1 can be introduced as a novel antibacterial candidate for expanding new therapeutic drugs.
Collapse
Affiliation(s)
- Mahnaz Nasre Taheri
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | | | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Liu M, Hu XD, Huang XY, Wen L, Xu Z, Ding L, Cheng YH, Chen ML. Extraction of antimicrobial peptides from pea protein hydrolysates by sulfonic acid functionalized biochar. Food Chem 2025; 463:141162. [PMID: 39265304 DOI: 10.1016/j.foodchem.2024.141162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The extraction methods for antimicrobial peptides (AMPs) from plants are varied, but the absence of a standardized and rapid technique remains a challenge. In this study, a functionalized biochar was developed and characterized for the extraction of AMPs from pea protein hydrolysates. The results indicated that the biochar mainly enriched AMPs through electrostatic interaction, hydrogen bonding and pore filling. Then three novel cationic antimicrobial peptides were identified, among which the RDLFK (Arg-Asp-Leu-Phe-Lys) had the greatest inhibitory effect against Staphylococcus aureus and Bacillus subtilis, showcasing IC50 value of 2.372 and 1.000 mg/mL, respectively. Additionally, it was found that RDLFK could damage bacterial cell membranes and penetrate the cells to inhibit DNA synthesis. These results provided that the biochar-based extraction method presents an efficient and promising avenue for isolating AMPs, addressing a critical gap in the current methodologies for their extraction from plant sources.
Collapse
Affiliation(s)
- Min Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Xian-Da Hu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Xiang-Yu Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
9
|
Tao W, Li W, Aweya JJ, Lin R, Jin R, Liang D, Ren Z, Yang S. Bacillus subtilis fermented shrimp waste isolated peptide, PVQ9, and its antimicrobial mechanism on four Gram-positive foodborne bacteria. Food Microbiol 2025; 125:104654. [PMID: 39448164 DOI: 10.1016/j.fm.2024.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Bacillus subtilis produces proteases that hydrolyze proteins to produce bioactive peptides. Given the mounting waste from processed shrimp, the antimicrobial potential of peptides isolated from B. subtilis fermented shrimp waste was explored. Among the five peptides screened using molecular docking prediction, PVQ9 (AVFPSIVGRPR) had strong antibacterial activity against four common foodborne Gram-positive bacteria, i.e., Staphylococcus aureus, Bacillus cereus, Mammaliicoccus sciuri, and Kurthia gibsonii. The minimum bactericidal concentrations (MBCs) were 62.5 μg/mL for S. aureus and B. cereus, and 31.3 μg/mL for both M. sciuri and K. gibsonii, with a time-kill of 3 h observed for all strains. Mechanistically, it was demonstrated that PVQ9 could destroy bacterial cell walls, change bacteria cell membrane permeability, bind to bacteria DNA, and cause cell apoptosis. Most importantly, peptide PVQ9 could inhibit the spoilage of bean curd or tofu contaminated with K. gibsonii. These findings suggest that PVQ9 could be a useful preservative in controlling foodborne pathogenic bacteria in soy products and other processed foods.
Collapse
Affiliation(s)
- Weihong Tao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Wenjie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
10
|
Yang B, Yang H, Liang J, Chen J, Wang C, Wang Y, Wang J, Luo W, Deng T, Guo J. A review on the screening methods for the discovery of natural antimicrobial peptides. J Pharm Anal 2025; 15:101046. [PMID: 39885972 PMCID: PMC11780100 DOI: 10.1016/j.jpha.2024.101046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 02/01/2025] Open
Abstract
Natural antimicrobial peptides (AMPs) are promising candidates for the development of a new generation of antimicrobials to combat antibiotic-resistant pathogens. They have found extensive applications in the fields of medicine, food, and agriculture. However, efficiently screening AMPs from natural sources poses several challenges, including low efficiency and high antibiotic resistance. This review focuses on the action mechanisms of AMPs, both through membrane and non-membrane routes. We thoroughly examine various highly efficient AMP screening methods, including whole-bacterial adsorption binding, cell membrane chromatography (CMC), phospholipid membrane chromatography binding, membrane-mediated capillary electrophoresis (CE), colorimetric assays, thin layer chromatography (TLC), fluorescence-based screening, genetic sequencing-based analysis, computational mining of AMP databases, and virtual screening methods. Additionally, we discuss potential developmental applications for enhancing the efficiency of AMP discovery. This review provides a comprehensive framework for identifying AMPs within complex natural product systems.
Collapse
Affiliation(s)
- Bin Yang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Hongyan Yang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jianlong Liang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jiarou Chen
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Yuanyuan Wang
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jincai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenhui Luo
- Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong, 528244, China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, China
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
11
|
Cui M, Wang M, Sun H, Yu L, Su Z, Zhang X, Zheng Y, Xia M, Shen Y, Wang M. Identifying and characterization of novel broad-spectrum bacteriocins from the Shanxi aged vinegar microbiome: Machine learning, molecular simulation, and activity validation. Int J Biol Macromol 2024; 270:132272. [PMID: 38734334 DOI: 10.1016/j.ijbiomac.2024.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Shanxi aged vinegar microbiome encodes a wide variety of bacteriocins. The aim of this study was to mine, screen and characterize novel broad-spectrum bacteriocins from the large-scale microbiome data of Shanxi aged vinegar through machine learning, molecular simulation and activity validation. A total of 158 potential bacteriocins were innovatively mined from 117,552 representative genes based on metatranscriptomic information from the Shanxi aged vinegar microbiome using machine learning techniques and 12 microorganisms were identified to secrete bacteriocins at the genus level. Subsequently, employing AlphaFold2 structure prediction and molecular dynamics simulations, eight bacteriocins with high stability were further screened, and all of them were confirmed to have bacteriostatic activity by the Escherichia coli BL21 expression system. Then, gene_386319 (named LAB-3) and gene_403047 (named LAB-4) with the strongest antibacterial activities were purified by two-step methods and analyzed by mass spectrometry. The two bacteriocins have broad-spectrum antimicrobial activity with minimum inhibitory concentration values of 6.79 μg/mL-15.31 μg/mL against Staphylococcus aureus and Escherichia coli. Furthermore, molecular docking analysis indicated that LAB-3 and LAB-4 could interact with dihydrofolate reductase through hydrogen bonds, salt-bridge forces and hydrophobic forces. These findings suggested that the two bacteriocins could be considered as promising broad-spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Meili Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengyue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoyan Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lu Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenhua Su
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanbing Shen
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Fang P, Yu S, Ma X, Hou L, Li T, Gao K, Wang Y, Sun Q, Shang L, Liu Q, Nie M, Yang J. Applications of tandem mass spectrometry (MS/MS) in antimicrobial peptides field: Current state and new applications. Heliyon 2024; 10:e28484. [PMID: 38601527 PMCID: PMC11004759 DOI: 10.1016/j.heliyon.2024.e28484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Antimicrobial peptides (AMPs) constitute a group of small molecular peptides that exhibit a wide range of antimicrobial activity. These peptides are abundantly present in the innate immune system of various organisms. Given the rise of multidrug-resistant bacteria, microbiological studies have identified AMPs as potential natural antibiotics. In the context of antimicrobial resistance across various human pathogens, AMPs hold considerable promise for clinical applications. However, numerous challenges exist in the detection of AMPs, particularly by immunological and molecular biological methods, especially when studying of newly discovered AMPs in proteomics. This review outlines the current status of AMPs research and the strategies employed in their development, considering resent discoveries and methodologies. Subsequently, we focus on the advanced techniques of mass spectrometry for the quantification of AMPs in diverse samples, and analyzes their application, advantages, and limitations. Additionally, we propose suggestions for the future development of tandem mass spectrometry for the detection of AMPs.
Collapse
Affiliation(s)
- Panpan Fang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Lian Hou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, PR China
| | - Tiewei Li
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Kaijie Gao
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Yingyuan Wang
- Department of Neonatal Intensive Care Unit, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Qianqian Sun
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Lujun Shang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550004, PR China
| | - Qianqian Liu
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Manjie Nie
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| | - Junmei Yang
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, PR China
| |
Collapse
|
13
|
Comet Manesa K, Dyosi Z. Review on Moringa oleifera, a green adsorbent for contaminants removal: characterization, prediction, modelling and optimization using Response Surface Methodology (RSM) and Artificial Neural Network (ANN). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1014-1027. [PMID: 38146218 DOI: 10.1080/10934529.2023.2291977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
Moringa oleifera utilization in water treatment to eliminate emerging pollutants such as heavy metal ions, pesticides, pharmaceuticals, and pigments has been extensively evaluated. The efficacy of Moringa oleifera biosorbent has been investigated in diverse research work using various techniques, including its adsorption capacity kinetic, thermodynamic evaluation, adsorbent modifications, and mechanism behind the adsorption process. The Langmuir isotherm provided the most remarkable experimental data fit for batch adsorption investigations, whereas the best fit was obtained with the pseudo-second order kinetic model. Furthermore, only a few papers that combined batch adsorption with fixed-bed column investigations were examined. In the latter articles, the scientists modified the adsorbent to increase the material's adsorption capacity as determined by analytical methods, including IR spectroscopy, scanning electronic microscope (SEM), and X-ray diffraction (XRD). However, the raw material can show appreciable adsorption capacity values, proving moringa's potency as a biosorbent. Hydrogen bonds, electrostatic interaction, and van der Waals forces were the main processes in the found and reported adsorbent-adsorbate interactions. These mechanisms could change depending on the physiochemical nature of adsorption. Although frequently employed for heavy metal ions and dye adsorption, Moringa oleifera can still be explored in pesticide and medication adsorption investigations due to the few publications in this comprehensive review. This study, therefore, examined different Adsorbents from the Moringa oleifera plant, as well as parameters and models for enhancing the adsorption process.
Collapse
Affiliation(s)
| | - Zolani Dyosi
- Knowledge Advancement and Support, National Research Foundation, Pretoria, South Africa
| |
Collapse
|
14
|
Zhang ZQ, Ren XR, Geng J, Chen SC, Wang QL, Liu CQ, Xiao JH, Huang DW. Identification, characterization and hypolipidemic effect of novel peptides in protein hydrolysate from Protaetia brevitarsis larvae. Food Res Int 2024; 176:113813. [PMID: 38163717 DOI: 10.1016/j.foodres.2023.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The proteins were mainly derived from Protaetia brevitarsis larval extracts obtained using two empty intestine methods (traditional static method: TSM or salt immersion stress method: SISM) and extraction solvents (water: W or 50 % water-ethanol: W:E), and the proteins were used as objects to investigate the effect of emptying intestine methods on hypolipidemic peptides. The results revealed that the F-2 fractions of protein hydrolysate had stronger in vitro hypolipidemic activity, with the peptides obtained by SISM possessing a stronger cholesterol micelle solubility inhibition rate, especially in SISM-W:E-P. Moreover, a total of 106 peptides were tentatively identified, among which SISM identified more peptides with an amino acid number < 8. Meanwhile, five novel peptides (YPPFH, YPGFGK, KYPF, SPLPGPR and VPPP) exhibited good hypolipidemic activity in vitro and in vivo, among which YPPFH, VPPP and KYPF had strong inhibitory activities on pancreatic lipase (PL) and cholesteryl esterase (CE), and KYPF, SPLPGPR and VPPP could significantly reduce the TG content in Caenorhabditis elegans. Thus, P. brevitarsis can be developed as a naturally derived hypolipidemic component for the development and application in functional foods.
Collapse
Affiliation(s)
- Zong-Qi Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xin-Rui Ren
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Si-Cong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing-Lei Wang
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, People's Republic of China
| | - Chun-Qin Liu
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, People's Republic of China
| | - Jin-Hua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| | - Da-Wei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
15
|
Pimchan T, Tian F, Thumanu K, Rodtong S, Yongsawatdigul J. Anti-Salmonella Activity of a Novel Peptide, KGGDLGLFEPTL, Derived from Egg Yolk Hydrolysate. Antibiotics (Basel) 2023; 13:19. [PMID: 38247578 PMCID: PMC10812675 DOI: 10.3390/antibiotics13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The present study aimed to characterize the mode of action of a novel antimicrobial peptide isolated from egg yolk hydrolysate. The EYHp6, KGGDLGLFEPTL, exhibited inhibition against Salmonella enterica serovar Typhimurium TISTR 292 and S. enterica serovar Enteritidis DMST 15679 with a MIC value of 2 mM. In contrast, S. enterica serovar Newport ATCC 6962 and other strains of Typhimurium and Enteritidis were inhibited at 4 mM. EYHp6 increased the cell membrane permeability of S. Typhimurium TISTR 292, leading to DNA leakage. Membrane integrity determined by propidium iodide and SYTO9 staining visualized by confocal microscopy demonstrated that EYHp6 at 1 × MIC induced disruption of cell membranes. Electron microscopy revealed that treatment of S. Typhimurium with EYHp6 led to damage to the cell membrane, causing the leakage of intracellular contents. Synchrotron-based Fourier-transform infrared spectroscopy indicated that EYHp6 killed S. Typhimurium by targeting fatty acids and nucleic acids in the cell membrane. The peptide did not show hemolytic activity up to 4 mM. These findings suggest that EYHp6 could be a promising antibacterial agent for controlling the growth of S. enterica.
Collapse
Affiliation(s)
- Thippawan Pimchan
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Fu Tian
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand;
| | - Sureelak Rodtong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| |
Collapse
|
16
|
Li Y, Tang X, Yang Z, He J, Ma N, Huang A, Shi Y. BCp12/PLA combination: A novel antibacterial agent targeting Mur family, DNA gyrase and DHFR. Int J Food Microbiol 2023; 406:110370. [PMID: 37678070 DOI: 10.1016/j.ijfoodmicro.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The combination of natural antimicrobial peptide BCp12/phenyllatic acid (BCp12/PLA) presents a more efficient antibacterial effect, but its antibacterial mechanism remains unclear. This study studied the synergistic antibacterial mechanism of BCp12 and PLA against S. aureus. The results demonstrated that the BCp12/PLA combination presented a synergistic antibacterial effect against S. aureus, with a fractional inhibitory concentration of 0.05. Furthermore, flow cytometry and scanning electron microscope analysis revealed that BCp12 and PLA synergistically promoted cell membrane disruption compared with the group treated only with one compound, inducing structural cell damage and cytoplasmic leakage. In addition, fluorescence spectroscopy analysis suggested that BCp12 and PLA synergistically influenced genomic DNA. BCp12 and PLA targeted enzymes related to peptidoglycan and DNA synthesis and interacted by hydrogen bonding and hydrophobic interactions with mur enzymes (murC, murD, murE, murF, and murG), dihydrofolate reductase, and DNA gyrase. Additionally, the combined treatment successfully inhibited microbial reproduction in the storage of pasteurized milk, indicating that the combination of BCp12 and PLA can be used as a new preservative strategy in food systems. Overall, this study could provide potential strategies for preventing and controlling foodborne pathogens.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaozhao Tang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Jinze He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ni Ma
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
17
|
El Abdali Y, Saghrouchni H, Kara M, Mssillou I, Allali A, Jardan YAB, Kafkas NE, El-Assri EM, Nafidi HA, Bourhia M, Almaary KS, Eloutassi N, Bouia A. Exploring the Bioactive Compounds in Some Apple Vinegar Samples and Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3850. [PMID: 38005745 PMCID: PMC10675503 DOI: 10.3390/plants12223850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Apple vinegar is highly recommended for nutrition due to its health benefits and bioactive components. However, the apple cultivar greatly influences the quality of the vinegar. In this research, our focus was on examining the impact of four different apple cultivars on the physicochemical attributes, chemical composition, as well as biological properties-including antidepressant and anti-inflammatory activities-of vinegar. Interestingly, the physicochemical properties of vinegar and the contents of acetic acid and polyphenols depend on the apple cultivars. HPLC chromatographic analysis showed that citric acid (820.62-193.63 mg/100 g) and gallic acid (285.70-54.40 µg/g) were mostly abundant in the vinegar samples. The in vivo results showed that administration of Golden Delicious apple vinegar (10 mL/kg) to adult Wistar rats reduced carrageenan-induced inflammation by 37.50%. The same vinegar sample exhibited a significant antidepressant effect by reducing the rats' immobility time by 31.07% in the forced swimming test. Due to its high acidity, Golden Delicious vinegar was found to be more effective against bacteria, particularly Bacillus subtilis and Candida albicans, resulting in a MIC value of 31.81 mg/mL. Furthermore, the antioxidant activity of various vinegar samples was found to be powerful, displaying optimal values of IC50 = 65.20 mg/mL, 85.83%, and 26.45 AAE/g in the DPPH, β-carotene decolorization and TAC assays, respectively. In conclusion, the apple cultivars used in this study impact the chemical composition and biological activities of vinegar, which may help demonstrate the importance of raw material selection for the production of vinegar.
Collapse
Affiliation(s)
- Youness El Abdali
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcalı/Sarıçam, Adana 01330, Turkey;
| | - Mohammed Kara
- Laboratory of Biotechnology, Conservation and Valorisation of Naturals Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco;
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco;
| | - Aimad Allali
- Laboratory of Plant, Animal and Agro-Industry Productions, Faculty of Sciences, University of Ibn Tofail, Kenitra 14000, Morocco;
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Balcalı/Sarıçam, Adana 01330, Turkey
| | - El-Mehdi El-Assri
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Noureddine Eloutassi
- Laboratory of Pedagogy and Technological Innovation, Regional Centre of Education and Formation Professions, Fez 30050, Morocco
| | - Abdelhak Bouia
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| |
Collapse
|
18
|
Shettar SS, Bagewadi ZK, Yaraguppi DA, Das S, Mahanta N, Singh SP, Katti A, Saikia D. Gene expression and molecular characterization of recombinant subtilisin from Bacillus subtilis with antibacterial, antioxidant and anticancer properties. Int J Biol Macromol 2023; 249:125960. [PMID: 37517759 DOI: 10.1016/j.ijbiomac.2023.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 μg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 μM and 12 μM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Simita Das
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aditi Katti
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Dimple Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| |
Collapse
|
19
|
Zhang X, Yang J, Suo H, Tan J, Zhang Y, Song J. Identification and molecular mechanism of action of antibacterial peptides from Flavourzyme-hydrolyzed yak casein against Staphylococcus aureus. J Dairy Sci 2023; 106:3779-3790. [PMID: 37105875 DOI: 10.3168/jds.2022-22823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Antibacterial peptides can be released from yak milk casein. To date, the amino acid sequences and mechanism of action of yak casein-derived antibacterial peptides remain unknown. The current study identified antibacterial peptides from yak casein and their molecular mechanism of action. Our results showed that yak α-casein, β-casein, and κ-casein could be effectively hydrolyzed by Flavourzyme (Solarbio Science and Technology Co. Ltd.), and the 2-h hydrolysate showed the highest antibacterial rate of 43.07 ± 2.59% against Staphylococcus aureus. The 1,000 to 3,000 Da fraction accounted for 23.61% of the 2-h hydrolysate and had an antibacterial rate of 62.64 ± 4.40%. Three novel peptides with antibacterial activity were identified from this fraction, and the β-casein-derived peptide APKHKEMPFPKYP showed the strongest antibacterial effect (half-maximal inhibitory concentration = 0.397 mg/mL). Molecular docking predicted that APKHKEMPFPKYP interacted with 2 important enzymes of Staph. aureus, dihydrofolate reductase and DNA gyrase, through hydrophobic, hydrogen bonding, salt bridge, and π-π stacking interactions. Our findings suggest that the yak casein-derived peptides may serve as a potential source of natural preservatives to inhibit Staph. aureus.
Collapse
Affiliation(s)
- Xilu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing and Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiao Tan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
20
|
Han P, Ma A, Ning Y, Chen Z, Liu Y, Liu Z, Li S, Jia Y. Global gene-mining strategy for searching nonribosomal peptides as antimicrobial agents from microbial sources. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
21
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
22
|
Rivero-Pino F, Leon MJ, Millan-Linares MC, Montserrat-de la Paz S. Antimicrobial plant-derived peptides obtained by enzymatic hydrolysis and fermentation as components to improve current food systems. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
23
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|