1
|
Hu L, Xu T, Cai Y, Qin Y, Zheng Q, Chen T, Gong L, Yang J, Zhao Y, Chen J, Chen Z, Wu Y, Yang Z. Identifying Candidate Genes for Grape ( Vitis vinifera L.) Fruit Firmness through Genome-Wide Association Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8413-8425. [PMID: 40143437 PMCID: PMC11987033 DOI: 10.1021/acs.jafc.5c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
The firmness of grape berries is a critical factor influencing their commercial feasibility and is highly valued by both breeders and consumers. However, grape berry firmness is a complex quantitative trait governed by multiple genes, and our understanding of its genetic regulatory network remains incomplete. To elucidate the genetic mechanisms underlying grape berry firmness, this study employed genome-wide association studies (GWAS) to identify potential candidate genes associated with fruit firmness and cellulose content and to explore the gene regulatory network that controls their variation. The comprehensive GWAS results identified CesA as a candidate gene potentially regulating fruit firmness through its involvement in cellulose biosynthesis. To validate these findings, whole-genome gene family identification analysis was conducted. Furthermore, the key gene VvCslD5 was selected for functional validation, which included overexpression studies and subcellular localization. This study provides valuable insights into the regulation of biosynthesis and transcriptional signaling pathways that govern the structure of grape cell walls as well as the mechanisms underlying variations in grape firmness. These findings establish a solid foundation for future functional analyses of grape traits and will enhance breeding practices aimed at improving grape quality.
Collapse
Affiliation(s)
- Lingling Hu
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Tao Xu
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Yingjian Cai
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Yi Qin
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Qianqian Zheng
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Tianchi Chen
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
- College
of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 31000, China
| | - Lili Gong
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Jie Yang
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Yuyang Zhao
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Jiangbing Chen
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Zhihui Chen
- College
of Life Sciences, Dundee University, Dundee DD1 5EH, U.K.
| | - Yueyan Wu
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Zhongyi Yang
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| |
Collapse
|
2
|
Pękala P, Szymańska-Chargot M, Cybulska J, Zdunek A. Monosaccharide composition and degree of acetylation of non-cellulosic cell wall polysaccharides and their relationship to apple firmness. Food Chem 2025; 470:142639. [PMID: 39752747 DOI: 10.1016/j.foodchem.2024.142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
The firmness of the two apple varieties: Idared and Pinova was similar during ripening, while it decreased significantly during 3-month storage only for Idared. Pectin-rich fractions were isolated from apple flesh tissue: water-soluble pectin (WSP), imidazole-soluble pectin (ISP), and hemicellulose-rich fractions: natively acetylated hemicelluloses (LiCl-DMSO), deacetylated hemicelluloses (KOH). It was shown that the degree of acetylation (DAc) of the hemicelluloses fraction (LiCl-DMSO) increased during apple ripening and storage, with higher values for Idared. Furthermore, the DAc of the hemicellulose fraction (LiCl-DMSO) was shown to be negatively correlated with apple firmness, and thus, among other factors, the effect of the degree of acetylation of hemicelluloses on fruit softening during storage. In the WSP and ISP, galacturonic acid content increased during ripening and storage of apples, which also showed a correlation with firmness. A higher content of linear pectin was recorded for Idared, while the contribution of rhamnogalacturonans was higher for Pinova.
Collapse
Affiliation(s)
- Patrycja Pękala
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | | | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
3
|
Quandoh E, Albornoz K. Fresh-cut watermelon: postharvest physiology, technology, and opportunities for quality improvement. Front Genet 2025; 16:1523240. [PMID: 39963674 PMCID: PMC11830713 DOI: 10.3389/fgene.2025.1523240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Watermelon (Citrullus lanatus L.) fruit is widely consumed for its sweetness, flavor, nutrition and health-promoting properties. It is commonly commercialized in fresh-cut format, satisfying consumer demand for freshness and convenience, but its shelf-life is limited. Despite the potential for growth in fresh-cut watermelon sales, the industry faces the challenge of maintaining quality attributes during storage. Fresh-cut processing induces a series of physiological and biochemical events that lead to alterations in sensory, nutritional and microbiological quality. A signal transduction cascade involving increases in respiration and ethylene production rates and elevated activities of cell wall and membrane-degrading enzymes compromise cellular and tissue integrity. These responses contribute to the development of quality defects like juice leakage, firmness loss and water-soaked appearance. They also drive the loss of bioactive compounds like lycopene, affecting flesh color and reducing nutritional value, ultimately culminating in consumer rejection, food losses and waste. Although great research progress has been achieved in the past decades, knowledge gaps about the physiological, biochemical and molecular bases of quality loss persist. This review article summarizes the advances in the study of physicochemical, microbiological, nutritional, and sensory changes linked to the deterioration of watermelon after processing and during storage. Different technological approaches for quality improvement and shelf-life extension are summarized: pre- and postharvest, physical, and chemical. We also discuss the advantages, disadvantages and challenges of these interventions and propose alternative directions for future research aiming to reduce qualitative and quantitative fresh-cut watermelon losses.
Collapse
Affiliation(s)
| | - Karin Albornoz
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, Charleston, SC, United States
| |
Collapse
|
4
|
Barrera-Chamorro L, Fernandez-Prior Á, Rivero-Pino F, Montserrat-de la Paz S. A comprehensive review on the functionality and biological relevance of pectin and the use in the food industry. Carbohydr Polym 2025; 348:122794. [PMID: 39562070 DOI: 10.1016/j.carbpol.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
Pectin is a natural biopolymer, which can be extracted from food by-products, adding value to raw material, with a structure more complex than that of other polysaccharides. The gelling properties of these molecules, together with the bioactivity that these can exert, make them suitable to be used as ingredients and bioactive agents. In this review, the characterization of pectin (structure, sources, techno-functional, and biological properties), the extraction methods, and their use in the food industry (food packaging, as carriers, and as ingredients) are described. Different by-products can be used as substrates to extract pectin, enhancing a sustainable food system as described by the circular economy principles. Pectin is characterized for their techno-functional and biological properties, such as gelling and thickening properties or modulation of microbiota both in animals and humans. Such properties make these molecules suitable for a wide range of applications within the food chain, serving as packaging or carriers in foodstuff, or for direct use as functional ingredients as fiber. Overall, pectin has been shown to exert as promising components to be introduced in the food system, although further research on scaling-up the production process and feasibility has to be done.
Collapse
Affiliation(s)
- Luna Barrera-Chamorro
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - África Fernandez-Prior
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain; European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
5
|
Li F, Xia X, Li L, Song L, Ye Y, Jiang Y, Liu H. Elucidation of pineapple softening based on cell wall polysaccharides degradation during storage. FRONTIERS IN PLANT SCIENCE 2024; 15:1492575. [PMID: 39563955 PMCID: PMC11574306 DOI: 10.3389/fpls.2024.1492575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
The degradation of cell wall polysaccharides in pineapple fruit during softening was investigated in the present study. Two pectin fractions and two hemicellulose fractions were extracted from the cell wall materials of 'Comte de Paris' pineapple fruit at five softening stages, and their compositional changes were subsequently analyzed. The process of softening of the fruit corresponded to an increase in the water-soluble pectin (WSP) and 1 M KOH-soluble hemicellulose (HC1) fractions, and a decrease in the acid-soluble pectin (ASP) fraction, which suggested the solubilization and conversion of cellular wall components. However, the content of 4 M KOH-soluble hemicellulose (HC2) decreased and then returned to the initial level. Furthermore, WSP, ASP, and HC1 showed an increment in the content of low molecular weight polymers while a decline in the high molecular weight polymers throughout softening, and not significant change in the contents of different molecular polymers of HC2 was observed. Moreover, the galacturonic acid (GalA) content in the main chain of WSP was maintained at a relatively constant level, but the major branch monosaccharide galactose (Gal) in WSP decreased. Different from WSP, the molar percentages of Gal and GalA in ASP decreased. The Gal or Arabinose (Ara) in HC1 exhibited a gradual decline while the molar percentages of xylose (Xyl) and glucose (Glu) in the main chain increased. These suggested that the main chain of ASP degraded while the branched chains of ASP, WSP and HC1 depolymerized during pineapple softening. Overall, fruit softening of 'Comte de Paris' pineapple was found to be the result of differential modification of pectin and hemicellulose.
Collapse
Affiliation(s)
- Fengjun Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xingzhou Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Lilang Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Longlong Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yuping Ye
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Postharvest Handling of Fruits of Ministry of Agriculture and Rural Affairs, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Li S, Li Q, Qu G, Cao J, Jiang W. Fractionation and characterization of sodium carbonate-soluble fractions of cell wall pectic polysaccharides involved in the rapid mealiness of 'Hongjiangjun' apple fruit. Food Chem 2024; 455:139961. [PMID: 38850983 DOI: 10.1016/j.foodchem.2024.139961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Apple flesh tends to turn mealy and textural deterioration commonly occurs during storage. The comparative investigation of three sub-fractions separated from sodium carbonate-soluble pectin (SSP) of 'Hongjiangjun' apples between crisp and mealy stages was performed to unveil the textural alterations related to mealiness. In situ immunofluorescence labelling showed that galactans declined in parenchyma cell walls during the fruit mealiness. FTIR analysis, monosaccharide compositions and structural polymers configurated that loss of rhammogalacturonan-I (RG-I) from SSP sub-fragments (SC0.0-P and S-M0.0-P) might be closely involved in the mealiness. The NMR spectroscopy revealed that loss of the substituted galactans from α-Rhap residues repeat unit in SC0.0-P constituting RG-I in crisp stage that subsequently converted to S-M0.0-P in mealy stage might be closely associated with the modifications of pectin in cell walls during mealiness. These findings provided novel evidence for understanding the underlying modifications of SSP polymers during the mealiness of 'Hongjiangjun' apples.
Collapse
Affiliation(s)
- Shihao Li
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China
| | - Qianqian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghuadonglu Road, Beijing 100083, China
| |
Collapse
|
7
|
Wang L, Liu M, Luo Z, Chen Y, Qi Y, Ye M, Chen F, Dai F. Effect of modified atmosphere package on attributes of sweet bamboo shoots after harvest. FRONTIERS IN PLANT SCIENCE 2024; 15:1431097. [PMID: 38947949 PMCID: PMC11212469 DOI: 10.3389/fpls.2024.1431097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Tender bamboo shoots undergo rapid senescence that influences their quality and commercial value after harvest. In this study, the tender sweet bamboo shoots ('Wensun') were packed by a passive modified atmosphere packaging (PMAP) to inhibit the senescence process, taking polyethylene package as control. The increase in CO2 and the decrease in O2 gas concentrations in the headspace atmosphere of the packages were remarkably modified by PMAP treatments. The modified gas atmosphere packaging inhibited the changes in firmness, as well as the content of cellulose, total pectin, and lignin in the cell walls of bamboo shoots. The enzymatic activities of cellulase, pectinase, and polygalacturonase that act on cell wall polysaccharides, and phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, peroxidase, and laccase regulating the lignin biosynthesis were modified by PMAP treatment different from control during storage. The expression levels of the lignin biosynthesis genes PePAL3/4, PeCAD, Pe4CL5, PeC4H, PeCCOAOMT, PeCOMT, cellulose synthase PeCESA1, and related transcription factors PeSND2, PeKNAT7, PeMYB20, PeMYB63, and PeMYB85 were clearly regulated. These results suggest that PMAP efficiently retards the changes in lignin and cell wall polysaccharides, thus delaying the senescence of tender sweet bamboo shoots during storage.
Collapse
Affiliation(s)
- Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | | | | | | | | | | | | | - Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
8
|
Liu L, Sui Y, Wang T, Li X, Chen L, Shi M. Physicochemical and antioxidant properties of pectin from Actinidia arguta Sieb.et Zucc ( A. arguta) extracted by ultrasonic. Front Nutr 2024; 11:1349162. [PMID: 38660064 PMCID: PMC11041822 DOI: 10.3389/fnut.2024.1349162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Pectin was extracted from Actinidia arguta Sieb. et Zucc (A.arguta) using the ultrasound-assisted acid method and the single acid method. The physicochemical properties, structure, and antioxidant properties of two different pectins were investigated. The results showed that the extraction yield of the ultrasound-assisted acid method is higher than that of the single acid method. The molecular structure of A. arguta pectin extracted by the ultrasound-assisted acid method belongs to a mixed structure of RG-I and HG-type domains. Through structural feature analysis, the ultrasound-assisted extraction pectin (UAP) has a more branched structure than the single acid-extracted pectin (SAP). The SAP has a higher degree of esterification than the UAP. The physical property results show that the viscosity, solubility, and water-holding capacity of the UAP are better than those of the SAP. The antioxidant test results show that the hydroxyl radical scavenging and reducing powers of the UAP are superior to those of the SAP. This study shows the composition, physicochemical properties, and antioxidant activity of A. arguta pectin extracted by the ultrasonic-assisted extraction method to provide a theoretical basis for its application as an antioxidant and other food additives in the food industry.
Collapse
Affiliation(s)
- Liqi Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Yuhan Sui
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Tienan Wang
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Xiang Li
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Lina Chen
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Mao Shi
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| |
Collapse
|
9
|
Moradinezhad F, Aliabadi M, Ansarifar E. Zein Multilayer Electrospun Nanofibers Contain Essential Oil: Release Kinetic, Functional Effectiveness, and Application to Fruit Preservation. Foods 2024; 13:700. [PMID: 38472813 DOI: 10.3390/foods13050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 03/14/2024] Open
Abstract
In this study, sequential electrospinning was employed to produce a multilayer film consisting of zein nanofibers (Z) and Zataria multiflora essential oil (ZMEO) with different layers. The layers include: Z (without ZMEO), Z1 (one layer of Z + ZMEO), Z3 (three layers of Z + ZMEO), and Z5 (five layers of Z + ZMEO). Then, the effect of this antimicrobial packaging was investigated in relation to increasing the shelf life of strawberries at 4 °C for 12 days. The scanning electron microscopy (SEM) images of the fibers demonstrated a uniform and smooth structure without any beads. The use of Fourier transform infrared (FTIR) and Differential scanning calorimetry (DSC) showed that ZMEO was physically encapsulated into multilayer Z, resulting in an enhancement in thermal stability. The multilayer film showed a sustained release pattern of the encapsulated ZMEO for Z3, lasting for 90 h, and Z5, lasting for 180 h. This was in contrast to the rapid release within 50 h observed with Z film. The release kinetics for Z5 showed a good correlation with both the Higuchi and Korsmeyer-Peppas models, while for Z1 and Z3 films, Fickian diffusion was identified as the underlying mechanism. The findings of this study indicated that the multilayer film released ZMEO through a combination of diffusion and polymeric erosion. During a 12-day period of cold storage, strawberries that were treated with Z5 showed significant preservation of their anthocyanin (32.99%), antioxidant activity (25.04%), weight loss (24.46%), titratable acidity (11.47%), firmness (29.67%), and color (10.17%) compared to the control sample. The findings indicated that the sequential electrospinning technique used to create the multilayer nanofibrous film could be used in various fields, such as bioactive encapsulation, controlled release, antimicrobial packaging, and food preservation.
Collapse
Affiliation(s)
- Farid Moradinezhad
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand 9717434765, Iran
| | - Majid Aliabadi
- Department of Chemical Engineering, Islamic Azad University, Birjand Branch, Birjand 9717711111, Iran
| | - Elham Ansarifar
- Department of Nutrition & Food Hygiene, Social Determinants of Health Research Center, School of Health, Birjand University of Medical Science, Birjand P.O. Box 97175-379, Iran
| |
Collapse
|
10
|
Zhang C, Wang Y, Lv Y, Yang X, Wei X. Influence of pectin domains and protein on the viscosity and gelation properties of alkali-extracted pectin from green tea residue. Food Chem 2024; 430:137039. [PMID: 37586288 DOI: 10.1016/j.foodchem.2023.137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Alkaline pectin extract (APE) from green tea residues has lower viscosity and gelation properties than commercial citrus pectin. To improve the viscosity and gelation properties of APE, four treatments, namely degradation of homogalacturonan (HG) or rhamnogalacturonan (RG) I domains, esterification, and protein removal and degradation, were applied. With proper degradation of the HG or RG I domains (arabinan or galactan), the viscosity of APE increased from 12 to 2.5×104 or 5.0×103 mPa·s, respectively, and the numbers further increased by approximately 500 times with the addition of Ca2+. Other treatments had slight effects on APE viscosity. The strongest gel (G' = 6.7 × 103 Pa and G″ = 930 Pa) was made using the polygalacturonase treated APE with Ca2+ addition. Degradation of the HG domain or protein enhanced APE's self-crosslink effect, while all methods except protein degradation improved the calcium bridging effect, potentially improving the market potential of pectin from biowaste.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, 362200 Jinjiang, Fujian, China
| | - Yue Wang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Yiming Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Xin Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Xinyao Wei
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China.
| |
Collapse
|
11
|
Yao J, Yang C, Shi K, Liu Y, Xu G, Pan S. Effect of pulp cell wall polysaccharides on citrus fruit with different mastication traits. Food Chem 2023; 429:136740. [PMID: 37478608 DOI: 10.1016/j.foodchem.2023.136740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
Mastication trait is a primary quality attribute of citrus fruit, influencing consumer demands and industrial processing conditions. However, the underlying causes of differences in mastication traits of citrus remain unclear. In this study, microscopy, spectroscopy and diffraction techniques were applied to investigate the physicochemical properties of Hongmeiren (HMR), Satsuma (WM) and Nanfeng tangerine (NF) with superior, moderate and inferior mastication traits, respectively. Ultrastructure indicated that NF had more neatly arranged and regularly shaped cells than HMR and WM. The monosaccharide composition of NF revealed that multi-branched Na2CO3-soluble pectin (NSF) enhanced intercellular adhesion. Additionally, FT-IR analysis revealed more intense vibrations of O2-H····O6 intramolecular hydrogen bonds within NF cellulose, which resulted in a higher crystallinity of cellulose (73.75%) than HMR (32.53%) and WM (43.76%). Overall, the high content and crystallinity of cellulose, the multi-branched NSF and the high content of hemicellulose contributed to the inferior mastication trait of citrus fruit.
Collapse
Affiliation(s)
- Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China.
| |
Collapse
|