1
|
Shang YF, Chen H, Ni ZJ, Thakur K, Zhang JG, Khan MR, Wei ZJ. Platycodon grandiflorum saponins: Ionic liquid-ultrasound-assisted extraction, antioxidant, whitening, and antiaging activity. Food Chem 2024; 451:139521. [PMID: 38703735 DOI: 10.1016/j.foodchem.2024.139521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
This study explored the use of ionic liquid-ultrasound (ILU)-assisted extraction to enhance the extraction rate of Platycodon grandiflorum saponins (PGSs), and the content, extraction mechanism, antioxidant activity, whitening, and antiaging activity of PGSs prepared using ILU, ultrasound-water, thermal reflux-ethanol, and cellulase hydrolysis were compared. The ILU method particularly disrupted the cell wall, improved PGS extraction efficiency, and yielded a high total saponin content of 1.45 ± 0.02 mg/g. Five monomeric saponins were identified, with platycodin D being the most abundant at 1.357 mg/g. PGSs displayed excellent in vitro antioxidant activity and exhibited inhibitory effects on tyrosinase, elastase, and hyaluronidase. The results suggest that PGSs may have broad antioxidant, skin-whitening, and antiaging potential to a large extent. Overall, this study provided valuable insights into the extraction, identification, and bioactivities of PGSs, which could serve as a reference for future development and application of these compounds in the functional foods industry.
Collapse
Affiliation(s)
- Ya-Fang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Hui Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Bekavac N, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J, Jurinjak Tušek A, Šalić A. Advancements in Aqueous Two-Phase Systems for Enzyme Extraction, Purification, and Biotransformation. Molecules 2024; 29:3776. [PMID: 39202854 PMCID: PMC11357509 DOI: 10.3390/molecules29163776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In recent years, the increasing need for energy conservation and environmental protection has driven industries to explore more efficient and sustainable processes. Liquid-liquid extraction (LLE) is a common method used in various sectors for separating components of liquid mixtures. However, the traditional use of toxic solvents poses significant health and environmental risks, prompting the shift toward green solvents. This review deals with the principles, applications, and advantages of aqueous two-phase systems (ATPS) as an alternative to conventional LLE. ATPS, which typically utilize water and nontoxic components, offer significant benefits such as high purity and single-step biomolecule extraction. This paper explores the thermodynamic principles of ATPS, factors influencing enzyme partitioning, and recent advancements in the field. Specific emphasis is placed on the use of ATPS for enzyme extraction, showcasing its potential in improving yields and purity while minimizing environmental impact. The review also highlights the role of ionic liquids and deep eutectic solvents in enhancing the efficiency of ATPS, making them viable for industrial applications. The discussion extends to the challenges of integrating ATPS into biotransformation processes, including enzyme stability and process optimization. Through comprehensive analysis, this paper aims to provide insights into the future prospects of ATPS in sustainable industrial practices and biotechnological applications.
Collapse
Affiliation(s)
- Nikša Bekavac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.B.); (M.B.); (T.J.); (D.V.); (A.J.T.)
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Wang Z, Ge W, Bi W, Chen DDY. Strategies for using magnetic beads in enhanced deep eutectic solvent-mechanochemical extraction of natural products from orange peels. Food Chem 2024; 447:139004. [PMID: 38492304 DOI: 10.1016/j.foodchem.2024.139004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
To address the challenges of low recovery, prolonged extraction times, and environmental pollution caused by toxic solvents in traditional extraction methods, magnetic bead-enhanced deep eutectic solvent mechanochemical extraction was developed for extracting natural products from orange peels. The extraction efficiencies of deep eutectic solvents were experimentally evaluated, and theoretical methods were used to guide solvent selection. Choline chloride-ethylene glycol demonstrated the highest efficiency under the optimal extraction conditions: a molar ratio of 1:2, no water content, a solid-liquid ratio of 0.08 g/mL, and an extraction time of 60 s. The synergy between the deep eutectic solvent and magnetic bead-enhanced the mechanochemical extraction efficiencies. The study also examined the effects of different magnetic bead types and orange peel powder particle sizes on extraction efficiency, finding that a 0.11 mm particle size combined with CIP@SiO2 yielded the best results. Overall, this study holds promise as an environmentally friendly and efficient extraction method.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
4
|
Yu G, Dai C, Liu N, Xu R, Wang N, Chen B. Hydrocarbon Extraction with Ionic Liquids. Chem Rev 2024; 124:3331-3391. [PMID: 38447150 DOI: 10.1021/acs.chemrev.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.
Collapse
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
5
|
Liu G, Guo H, Zhao W, Yan H, Zhang E, Gao L. Advancements in Preprocessing and Analysis of Nitrite and Nitrate since 2010 in Biological Samples: A Review. Molecules 2023; 28:7122. [PMID: 37894601 PMCID: PMC10609401 DOI: 10.3390/molecules28207122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
As a substance present in organisms, nitrite is a metabolite of nitric oxide and can also be ingested. Nitrate is the metabolite of nitrite. Therefore, it is necessary to measure it quickly, easily and accurately to evaluate the health status of humans. Although there have been several reviews on analytical methods for non-biological samples, there have been no reviews focused on both sample preparation and analytical methods for biological samples. First, rapid and accurate nitrite measurement has significant effects on human health. Second, the detection of nitrite in biological samples is problematic due to its very low concentration and matrix interferences. Therefore, the pretreatment plus measuring methods for nitrite and nitrate obtained from biological samples since 2010 are summarized in the present review, and their prospects for the future are proposed. The treatment methods include liquid-liquid microextraction, various derivatization reactions, liquid-liquid extraction, protein precipitation, solid phase extraction, and cloud point extraction. Analytical methods include spectroscopic methods, paper-based analytical devices, ion chromatography, liquid chromatography, gas chromatography-mass spectrometry, electrochemical methods, liquid chromatography-mass spectrometry and capillary electrophoresis. Derivatization reagents with rapid quantitative reactions and advanced extraction methods with high enrichment efficiency are also included. Nitrate and nitrate should be determined at the same time by the same analytical method. In addition, much exploration has been performed on formulating fast testing through microfluidic technology. In this review, the newest developments in nitrite and nitrate processing are a focus in addition to novel techniques employed in such analyses.
Collapse
Affiliation(s)
- Guojie Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Honghui Guo
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Wanlin Zhao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Hongmu Yan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Enze Zhang
- First Clinical College, China Medical University, Shenyang 110122, China
| | - Lina Gao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
- Forensic Analytical Toxicology Department, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|