1
|
Feng J, Ye S, Wang J, Wu J, Zhao J, Tian W, Pan G, Yu B, Qiu D, Lin H, Hao Z. From water migration to aroma development: Revealing the influence of environmental airflow on the aroma of white tea during withering. Food Chem 2025; 479:143797. [PMID: 40088644 DOI: 10.1016/j.foodchem.2025.143797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Environmental airflow is an important factor affecting withering, primarily influencing the development of white tea's aroma. To examine how the aroma of white tea develops under the effect of environmental airflow during withering, tea shoots exposed to airflow (0.5 ± 0.2 m/s) were sampled and analyzed for water distribution, antioxidant enzyme activity, and volatiles content. The results indicated that environmental airflow hastened the evaporation of free water from witheing leaves during the pre-withering stage, facilitated the transformation of free water to bound water, stimulated antioxidant enzyme activity. Additionally, volatiles associated with green and grassy notes in white tea were dramatically reduced, including 3-hexen-1-ol, methyl salicylate, and (Z)-3-hexen-1-ol acetate. In contrast, volatiles responsible for floral and fruity scents, including linalool and nerolidol, became more concentrated. These findings provide important theoretical insights into increasing white tea manufacturing efficiency and quality.
Collapse
Affiliation(s)
- Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Junyang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jiake Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Weisu Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Guanjun Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China.
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China.
| |
Collapse
|
2
|
Xu C, Zhang J, Pan Y, Feng X, Yan A, Wang X, Xiang L, Guo H, He L, Chen T, Fan F, Gong S, Chen P, Chu Q. Formation of aroma characteristics driven by microorganisms during long-term storage of Liubao tea. Food Chem 2025; 476:143400. [PMID: 39986067 DOI: 10.1016/j.foodchem.2025.143400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Liubao tea (LBT) with longer storage year is believed to have better sensory quality. The aroma characteristics and fungal community succession during the storage process of LBT were studied using LBT stored for 2-15 years as materials. The results showed that the aroma characteristics of LBT showed significant changes in 3 stages. After 10 years of storage, the sensory quality of LBT was notably improved, with herbal aroma beginning to emerge and a distinctly woody aroma. In addition, fungi were involved in the transformation of substances to affect the aroma quality during the storage of LBT. Aspergillus and Penicillium may help reduce musty and green odors and enhancing woody and herbal odors based on correlation analysis. This study provided useful information on the key aroma compounds and core functional microorganisms that drive the aroma characteristics formation of LBT during storage.
Collapse
Affiliation(s)
- Chang Xu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jinming Zhang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Anran Yan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Lin Xiang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Lixin He
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China..
| |
Collapse
|
3
|
Cai M, Peng Z, Xu P, Yu M, Diao N, Cao Y, Dong S, Fang X. Comprehensive analysis of the flavor and color characteristics of light-fermented sour tea mediated by aspergillus Niger RAF106. Food Chem 2025; 481:143866. [PMID: 40154056 DOI: 10.1016/j.foodchem.2025.143866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
Light-fermented sour tea (ST) was produced by fermenting the Yunnan large-leaf variety of sun-dried green tea (GT) with Aspergillus niger RAF106. The flavor characteristics of both ST and GT were analyzed using GC-MS, HPLC, and LC-MS/MS. The results indicated that 58 volatile compounds were identified after fermentation, including linalool, benzaldehyde, geraniol, and (+)-limonene (odor activity value, OAV > 1). A total of 66 non-volatile compounds were identified, including caffeine, gallic acid, epicatechin, and epigallocatechin (degree over threshold, DoT >1). The content of non-ester catechins, theanine, L* (luminosity), b* (yellowness), theaflavins, and thearubigins significantly increased. The changes in volatile and non-volatile compounds contributed to ST its rich floral aroma, sweet aftertaste, and bright yellow color of the soup. These results enhance the understanding of the flavor characteristics of ST and the effect of A. niger RAF106 fermentation on tea flavor, highlighting the crucial role of microorganisms in tea flavor development.
Collapse
Affiliation(s)
- Minyu Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Peng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Piqian Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Miao Yu
- Department of Periodontics, Affliated Stomatology Hospital of Guangzhou Medical University, Research Center of Oral Restoration and Guangdong Engineering Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Nanxin Diao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Zhang J, Wang Z, Zhang L, Huang W, Lin F, Xiao C, Zheng Z, Huang Y, Sun W. Underlying characteristic aroma of white tea from diverse geographical origins and its prediction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40079094 DOI: 10.1002/jsfa.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND White tea, an agriculturally distinctive product, exhibits significant aroma variations across different regions. Nevertheless, the mechanisms driving these differences, and distinguishing methods suitable for specific origins, have been scarcely reported. In this study, we analyzed the aroma characteristics and volatile components of 100 white tea samples from ten regions, utilizing sensory evaluation, headspace solid-phase microextraction-gas chromatography-mass spectrometry and chemometrics, then established a discrimination model. RESULTS A total of 66 volatile compounds were identified, with alcohols and esters being the most important. Linalool and geranyl alcohol were common and relatively abundant volatile compounds across all ten regions, significantly contributing to the aroma characteristics of white tea. The relative content of volatile compounds differed notably across regions, where 33 key compounds, including (E)-2-phenylbut-2-enal and methyl 2,5-octadecadiynoate, were crucial for regional prediction. Employing machine learning algorithms, such as random forest and support vector machine for regional prediction, yielded accuracies of 93.33% and 90.00%, respectively. CONCLUSION This study unveils new insights into aroma variation in white tea across different origins, proposing an innovative way of origin determination. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jialin Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fuming Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Chunyan Xiao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Qiu Y, Hu X, Pang Y, Liu X, Lu J, Wang W, Song J, Zhang J, Lyu F. Identification of characteristic flavor compounds in steamed and baked Hu sheep mutton. Food Res Int 2025; 201:115599. [PMID: 39849753 DOI: 10.1016/j.foodres.2024.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The advancement in heat treatment technology has spurred the innovation of various smart cooking appliances, including the steam roaster. Consequently, the technique of synchronized steaming and baking has emerged as a novel form of thermal processing. Therefore, the effects of baking, steaming, steaming-baking heating modes on the flavor of Hu sheep mutton were evaluated. Main sensory descriptors were identified by descriptive sensory analysis. The results showed that SMM presented a relatively strong muttony profile, BKM presented a pronounced profile of burning, smokiness, and baking, while the flavor of SMM was situated intermediary between these two profiles. By SPME-GC-MS, 28 volatile chemicals with OAV > 1 were found. The correlation network analysis revealed relationships between the aroma compounds and sensory descriptors, namely "smoky and baked" (2,5-dimethylpyrazine, dimethyl trisulfide), "muttony" (hexanal, 2-heptenal), "fatty" ((E)-2-octenal), "meaty" (1-octen-3-ol), "burned" and "greasy" (3-methylthiopropionaldehyde, dimethyl disulfide). Meanwhile, analysis of 5'-nucleotides and FAAs revealed 8 characteristic taste compounds with TAV > 1. Moreover, multivariate analysis showed that 2-pentylfuran, E-2-octenal and 2-heptenal, 2,5-dimethylpyrazine might contribute more to the flavor of steamed-baked, steamed, baked Hu sheep mutton, respectively.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Pang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolin Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junxiong Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jixuan Song
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Li Y, Liang J, Liang L. Identification of non-volatile compounds during the pile fermentation process of Liupao tea using widely targeted metabolomics based on UPLC-QTOF-MS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:377-388. [PMID: 39868396 PMCID: PMC11757836 DOI: 10.1007/s13197-024-06036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 01/28/2025]
Abstract
Pile fermentation plays a crucial role in the formation of the unique flavor of Liupao tea, which can effectively reduce the bitterness of the tea and promote the formation of red tea soup. In this study, the non-volatiles changes of Liupao tea during pile fermentation processing were fully analyzed by UPLC-QTOF-MS/MS. A total of 271 metabolites with significant differences were identified in Liupao tea during pile fermentation(P < 0.01, VIP > 1), and their trends were grouped into 10 subclasses by K-means analysis. Three differential metabolites Choline Alfoscerate, N1-Methyl-4-pyridone-5-carboxamide, and 2-Aminovalienone were shared among the three different pile fermentation periods. The results provided valuable information for understanding the dynamic changes of non-volatile substances during the pile fermentation process of Liupao tea. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06036-7.
Collapse
Affiliation(s)
- Ya Li
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| | - Jianfeng Liang
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| | - Lili Liang
- School of Food and Pharmaceutical Engineering (Liupao Tea modern Industry College), Wuzhou University, Wuzhou, 543002 China
| |
Collapse
|
7
|
Weng Y, Chen L, Kun J, He S, Tong H, Chen Y. The unique aroma of ripened Pu-erh tea, Liupao tea and Tietban tea: Associated post-fermentation condition and dominant microorganism with key aroma-active compound. Food Chem 2025; 464:141788. [PMID: 39476579 DOI: 10.1016/j.foodchem.2024.141788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Dark tea with a unique aroma is a particular type of tea. Post-fermentation is the key manufacturing process that forms a unique aroma, distinguishing dark tea from other types of tea. Different post-fermentation conditions may be the reason for forming unique aromas in various dark teas. Microbial community and composition during post-fermentation are the main contributors to the formation of characteristic aroma in various dark teas. In this paper, we illustrated the differences in fermentation length, pile temperature and water content of ripened Pu-erh tea, Liupao tea and Tibetan tea during post-fermentation, and only six dominant microorganisms and six key aroma-active compounds were found to be consistent among the three dark teas. Furthermore, we elaborated on the correlations between key aroma-active compounds and core functional microorganisms during post-fermentation. Exploring these interrelationships during post-fermentation is crucial and worthwhile to maintain the stability of the aroma quality of the three dark teas.
Collapse
Affiliation(s)
- Yiwei Weng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Linmu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jirui Kun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Shiqiang He
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- College of Food Science, Southwest University, Chongqing 400715, China.
| | - Yingjuan Chen
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Wang M, Song D, Yin H, Fang F, Shi Y, Wang H, Li J, Wang K, Zhu Y, Lv H, Ding S. Insight into the Volatile Profiles and Key Odorants of Rizhao Green Tea by Application of SBSE-GC-MS, OAVs and GC-O Analysis. Foods 2025; 14:458. [PMID: 39942051 PMCID: PMC11817708 DOI: 10.3390/foods14030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Rizhao green tea (RZT), a renowned green tea, is cultivated in China's northernmost tea region. Its unique environment endows it with a strong chestnut- and seaweed-like aroma. This study sought to explore the volatile profiles of RZT and pinpoint its key odorants by employing stir bar sorptive extraction (SBSE) coupled with gas chromatography-mass spectrometry (GC-MS), determining the odor activity value (OAV), and performing gas chromatography-olfactometry (GC-O). A total of 112 volatiles were identified, and the major volatile compounds were esters (2035.25 μg/kg), alcohols (1799.02 μg/kg), alkanes (991.88 μg/kg), and ketones (691.96 μg/kg), comprising 74.91% of the total. A molecular aroma wheel was preliminarily established based on these key odorants. These insights might contribute to the scientific elucidation of the flavor chemical basis of RZT.
Collapse
Affiliation(s)
- Mengqi Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| | - Dapeng Song
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| | - Hongxu Yin
- Rizhao Donggang District Agriculture and Rural Bureau, Rizhao 276800, China;
| | - Fengxiang Fang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| | - Yali Shi
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Hui Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| | - Jiyan Li
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| | - Kunpeng Wang
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China;
| | - Shibo Ding
- Tea Research Institute, Rizhao Academy of Agricultural Sciences, Rizhao 276800, China; (M.W.); (D.S.); (F.F.); (H.W.); (J.L.); (K.W.)
| |
Collapse
|
9
|
Wang X, She Z, Zhou H, An T, Teng J, Xia N, Zhu P, Liu W, Dong H, Tang L, You S, Wei L, Li K, Wang L, Huang L, Zhang Q. Characterisation of the phytochemical and bioactivity profiles of raw tea, stale-aroma, and betelnut-aroma type of Liupao tea through GC/LC-MS-based metabolomics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:562-575. [PMID: 39668786 DOI: 10.1039/d4ay01672f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Liupao tea (LPT) is a Chinese dark tea known to possess a unique flavour. Microbial fermentation plays a crucial role in flavour development and enrichment. Currently, the phytochemical profiles and bioactivities of LPT with and without fermentation are not fully known. In this study, we compared the chemical composition of raw tea (SF), stale-aroma (SA), and betelnut-aroma (BA) type LPT through the application of GC/LC-MS-based metabolomics, and experimentally investigated their bioactivities via antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic assays in vitro. The results indicated that fermentation enhanced the flavour of LPT as evidenced by the sweetness-producing substances, decreased bitterness and astringency-related compounds and enriched abundance of aroma-generating compounds. Two and four volatiles were detected to be major contributors to the aroma in SA and BA, respectively. Fatty acids and phosphatidylcholines were the primary lipids, among which the lysing diacylglycerol trimethyl homoserines were found to be a new class of lipids in LPT. Notably, the fermentation resulted in the degradation of compounds, particularly glycerophospholipids and saccharolipids. SF had the highest level of bioactivity, followed by BA and SA. These findings expand the present understanding regarding the development of flavour, nutrition, and medicinal value of LPT. Moreover, they provide a theoretical basis for the identification of BA and SA and serve as a reference value for consumers in their selection of LPT products.
Collapse
Affiliation(s)
- Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Hailin Zhou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingting An
- Urumqi Youai Hospital, Urumqi, Xinjiang 830000, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenhui Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Huanxiao Dong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Limin Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Shulan You
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lu Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Kongying Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Lingli Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi 530004, China
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
10
|
Wu Y, Li T, Huang W, Liu Q, Deng G, Zhang J, Wei Y, Wang Y, Ning J. Investigation of the aroma profile and blending strategy of Lu'an Guapian teas during grain rain period by sensory evaluation combined with SBSE-GC-MS, GC-O and OAV. Food Chem 2025; 463:141167. [PMID: 39260172 DOI: 10.1016/j.foodchem.2024.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Grain Rain Period (GRP), one of the 24 solar terms in China, signifies a crucial phase for the transformation of tea quality, especially for Lu'an Guapian (LAGP) tea. During GRP, LAGP teas showed 3 distinct aroma profiles, each spanning 3-4 days. Specifically, the sensory evaluation result revealed that LAGP tea exhibited stronger flowery and fresh aromas in the early phase, with the soybean-like aroma significantly intensifying as the harvest period progressed during GRP. Furthermore, the key contributors to the aroma profile and its variation during GRP were identified as indole, δ-decalactone, geraniol, linalool, decanal, jasmone, (E)-β-ionone, benzeneacetaldehyde, dihydroactinolide, nonanal, octanal, (E)-isoeugenol, (E,E)-2,4-nonadienal, 4-ketoisophorone, (E,Z)-2,6-nonadienal, and 1-octen-3-one. Additionally, we proposed a binary blending strategy using sensory evaluation with the methods of triangle test and normal distribution fitting to predict the blending threshold accurately. This study elucidated the dynamics of LAGP tea aroma during GRP and offered insights for tea blending optimization.
Collapse
Affiliation(s)
- Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Guojian Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
11
|
Zhang L, Yu Y, Wen Q, Nie S, Hu Y, Tan C, Tu Z. Decoding the effects of brining time on the sensory quality, physicochemical properties and flavor characteristics of marinated grass carp meat. Food Chem X 2025; 25:102081. [PMID: 39758077 PMCID: PMC11698974 DOI: 10.1016/j.fochx.2024.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
This study aimed to explore the effects of different brining times on the sensory, physicochemical properties, and volatile organic compounds (VOCs) of marinated grass carp (MGC). The results showed that different brining time changed the sensory quality, color and texture. The moisture content increased significantly with the extension of brining time, while the salt content, protein content, thiobarbituric acid reactive substances (TBARS), and total volatile basic‑nitrogen (TVB-N) decreased (p < 0.05). Free amino acids indicated that sweet amino acids significantly decreased, but bitter and umami amino acids increased. E-nose and E-tongue could clearly distinguish different MGC samples, and gas chromatography ion mobility spectrometry (GC-IMS) identified a total of 72 VOCs. Among them, 11 key VOCs were screened based on the variable importance of predicted component value (VIP) and relative odor activity value (ROAV), and they showed a high correlation with MGC quality. This study provides a theoretical foundation for enhancing the quality and improving the flavor of MGC.
Collapse
Affiliation(s)
- Lu Zhang
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yaqin Yu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Qinhui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Shi Nie
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunming Tan
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
12
|
Qin L, Zheng J, Fan B, Zhou Y, Diao R, Sun Y, Liu J, Wang F. Analysis of volatile flavour compounds in different potato varieties and regions and the effect of soil elements on starch content. Food Chem X 2024; 24:102019. [PMID: 39655219 PMCID: PMC11626059 DOI: 10.1016/j.fochx.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
This study aims to analyze the differences in flavor compounds of potatoes from various varieties and regions, as well as to explore the impact of soil elements on starch content in potatoes. Headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile flavor compounds in 18 potatoes representing 4 different varieties from 5 different regions. The relative odor activity (rOAV) was utilized for principal component analysis to establish a comprehensive scoring model for potato volatile flavor compounds. In addition, the starch and amylose content of the potatoes were determined using enzymatic methods, and the correlation between soil elements and starch content in Dingxi potatoes was analyzed. The results indicated that the flavor scores for the samples "DX-DP," "DX-LS," "NM-XY," "JB-LS," "ZB-XS," and "GY-LS" were 15.184, 14.500, 13.992, -4.62, -7.199 and - 9.525, respectively, with "DX-DP" exhibiting the highest flavor score (15.184) and starch content (15.21 %). This study demonstrated that the overall quality of potatoes from Dingxi was superior, particularly for "DX-DP". Further analysis revealed that potato starch content was positively correlated with soil potassium and negatively correlated with total nitrogen and pH. In conclusion, this study provides insights into the relationship between potato genotypes and soil environments, offering valuable guidance for potato land selection and cultivation practices.
Collapse
Affiliation(s)
- Luqi Qin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiahuan Zheng
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yixia Zhou
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rao Diao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufeng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831199, China
| |
Collapse
|
13
|
Chen G, Xue Y, Zhu G, Xie H, Zhang J, Xiao W, He C, Huang J, Liu Z, Wang C. Characterization of the influence of extraction factors on instant Pu-erh tea: Focusing on changes in sensory quality and aroma profile. Food Chem X 2024; 24:101925. [PMID: 39606743 PMCID: PMC11599999 DOI: 10.1016/j.fochx.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The objective of this study is to explore the influence of extraction factors, including extraction temperatures, extraction time, and tea-water ratios, on the sensory quality and aroma characteristics of instant Pu-erh tea (IPET). Sensory evaluation, quantitative descriptive analysis (QDA) and HS-SPME-GC × GC-TOF/MS were utilized for analysis. The result showed that the optimal process condition of IPET was a tea-to-water ratio 1:8, an extraction temperature 75 °C, and an extraction time 60 min. A total of 235 volatile compounds were identified and 65 key odor-active compounds with ROAV>1 in all samples. Based VIP > 1, 19 key differential odor-active compounds were identified, including linalool oxide I, 1-dodecanol, linalool oxide II, etc. Further Pearson correlation analysis of key differential odor-active compounds and aroma characteristics showed that positive correlations between woody and ethyl nonanoate and 1-dodecanol, and between herbal and 1-methylnaphthalene. This research provides theoretical support for the production of high-quality IPET.
Collapse
Affiliation(s)
- Guohe Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yajie Xue
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Guangmei Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - He Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Wanling Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Chuyi He
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China
- Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- Tea Cultivar Innovation Center, Yuelushan Laboratory, Changsha, Hunan 410128, PR China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China
- Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- Tea Cultivar Innovation Center, Yuelushan Laboratory, Changsha, Hunan 410128, PR China
| | - Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China
- Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- Tea Cultivar Innovation Center, Yuelushan Laboratory, Changsha, Hunan 410128, PR China
| |
Collapse
|
14
|
Wu Z, Liao W, Zhao H, Qiu Z, Zheng P, Liu Y, Lin X, Yao J, Li A, Tan X, Sun B, Meng H, Liu S. Differences in the Quality Components of Wuyi Rock Tea and Huizhou Rock Tea. Foods 2024; 14:4. [PMID: 39796294 PMCID: PMC11720515 DOI: 10.3390/foods14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Different origins and qualities can lead to differences in the taste and aroma of tea; however, the impacts of origin and quality on the taste and aroma characteristics of Wuyi rock tea and Huizhou rock tea have rarely been studied. In this study, high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluation methods were used to compare the quality components of Wuyi rock tea and Huizhou rock tea. The sensory evaluation showed that they each have their own characteristics, but the overall acceptability of Wuyi rock tea is ahead of Huizhou rock tea (p < 0.01). Biochemical experiments showed that HT was the highest in water leachables, about 43.12%; WT was the highest in tea polyphenols, about 14.91%; WR was the highest in free amino acids, about 3.38%; and the six rock teas had different health benefits. High-performance liquid chromatography showed that the theanine contents of WS and WR were 0.183% and 0.103%, respectively, which were much higher than those of other varieties. The OPLS-DA model predicted the factors that caused their different tastes, in order of contribution: CG > ECG > caffeine > EGCG > theanine. Ten volatile substances with OAV ≥ 1 and VIP > 1 were also found, indicating that they contributed greatly to the aroma characteristics, especially hexanoic acid, hexyl ester, and benzyl nitrile. The results of the correlation analysis showed that theanine was significantly correlated with taste (p < 0.05), and hexanoic acid, hexyl ester, and benzyl nitrile were significantly correlated with smell (p < 0.05). Substances such as theanine, hexanoic acid, hexyl ester, and benzyl nitrile give them their unique characteristics. Analysis of the differences in the quality components of the six rock teas can provide reference value for the cultivation and processing of rock teas.
Collapse
Affiliation(s)
- Zhaobao Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwen Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiyuan Yao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Meng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Huang Y, Liu H, Wang J, Zhang R, Zhang Y, Liu Z, Pang Y, Yang C, Nie J. Impact of the long-term storage on flavor quality of Liupao tea using sensory evaluation combined with metabolomics analysis. Food Res Int 2024; 198:115386. [PMID: 39643349 DOI: 10.1016/j.foodres.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
This study comprehensively investigated the impact of different storage times on the quality and metabolomic profiles of Liupao tea (LPT). The sensory evaluations revealed that both Maosheng (MS) and Tianyu (TY) teas exhibited a browning of tea appearance and brightening of tea infusion during storage. The taste evolved from bitterness and astringency to purity and briskness, while the aroma shifted from stuffy to woody and aged aromas. Notably, MS teas exhibited superior sensory quality after 10 years, while TY teas reached optimal quality in the 8th year of storage. Correlation analysis of metabolites and sensory attributes has underscored the integral influence of metabolites throughout the storage process, which significantly directed the development of tea quality. The non-volatile metabolites exerted significant influence on tea flavor by modulating key biochemical pathways, including the oxidation of catechins, the formation of alkaloids as well as the glycosylation and/or methylation of flavonoids. However, TY teas experienced both glycosylation and methylation, which promoted the transformation of bitterness and astringency, achieving a mellow and brisk taste more quickly than MS teas. The transformation pathways of volatile metabolites potentially involved the hydrolysis of linalool glycosides and phenylethanol glycosides, the synthesis of sesquiterpenes, the methylation of gallic acid and the degradation of carotenoids. However, the divergent trends observed in ketones and aldehydes between the two types of tea could culminate in distinct aromatic profiles, which might be due to different metabolic pathways or differences in the rates of metabolite formation and degradation during storage. Additionally, the antioxidant analysis revealed that both MS and TY teas exhibited a parabolic trend in comprehensive antioxidant capacity during storage, which primarily influenced by the oxidative polymerization of phenolic compounds and the glycosylation of flavonoids. In summary, this study emphasized the multifaceted attributes of tea quality and the importance of metabolites in shaping sensory quality and health properties. It was found that the optimal storage time of 8 to 10 years for LPT was conducive to attaining a desirable balance of flavor and health benefits.
Collapse
Affiliation(s)
- Yingyi Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Huahong Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jing Wang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Rui Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Field Scientific Observation and Research Station for Tea Resources, Guilin 541004, China.
| |
Collapse
|
16
|
Yang SB, Fu JJ, He JH, Zhang XJ, Chai LJ, Shi JS, Wang ST, Zhang SY, Shen CH, Lu ZM, Xu ZH. Decoding the Qu-aroma of medium-temperature Daqu starter by volatilomics, aroma recombination, omission studies and sensory analysis. Food Chem 2024; 457:140186. [PMID: 38924911 DOI: 10.1016/j.foodchem.2024.140186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Qu-aroma is of great significance for evaluation the quality of Daqu starter. This study aimed to decode the Qu-aroma of medium-temperature Daqu (MT-Daqu) via "top-down" and "bottom-up" approaches. Firstly, 52 aroma descriptors were defined to describe the MT-Daqu aroma by quantitative descriptive analysis. Secondly, 193 volatile organic compounds (VOCs) were identified from 42 MT-Daqu samples by HS-SPME-GC-MS, and 43 dominant VOCs were screened out by frequence of occurrence or abundance. By Thin Film (TF)-SPME-GC-O-MS, 27 odors and 90 VOCs were detected in MT-Daqu mixture, and 14 odor-active VOCs were screened out by odor intensity. Thirdly, a five-level MT-Daqu aroma wheel was constructed by matching 52 aroma descriptors and 37 aroma-active VOCs. Finally, Qu-aroma of MT-Daqu was reconstructed with 37 aroma-active VOCs and evaluated by omission experiments. Hereinto, 26 key aroma-active VOCs were determined by OAV value ≥1, including isovaleric acid, 1-hexanol, isovaleraldehyde, 2-octanone, trimethylpyrazine, γ-nonalactone, 4-vinylguaiacol, etc.
Collapse
Affiliation(s)
- Sheng-Bing Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jun-Jie Fu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jia-Huan He
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Li-Juan Chai
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Su-Yi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| | - Zheng-Hong Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Lu M, Sheng C, Ke H, Li T, Liu Q, Zhang J, Li L, Wang Y, Ning J. Revealing the differences in aroma of black tea under different drying methods based on GC-MS, GC-O. Food Chem X 2024; 23:101782. [PMID: 39280227 PMCID: PMC11402106 DOI: 10.1016/j.fochx.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Drying greatly affects the aroma of black tea. In this study, the differences in aroma of black tea under hot-air drying (HD), sun drying (SD), and pan-fired drying (PD) were investigated through quantitative descriptive analysis. Headspace solid-phase microextraction and solvent assisted flavor evaporation combined with gas chromatography-mass spectrometry and gas chromatography-olfactory were used to analyze the overall aroma profile of black tea. Aroma extract dilution analysis and odor activity values revealed that 15 aroma-active compounds led to differences in aroma, namely linalool, geraniol, phenylethyl alcohol, phenylacetaldehyde, (Z) -linalool oxide (furanoid), β-damascenone, dimethyl sulfide, methional, 2-methylbutanal, 3-methylbutanal, methyl salicylate, β-myrcene, hexanal, 1-octen-3-ol, and heptanal. Among them, geraniol, linalool, and methional significantly enhanced the floral and roasty aroma of HD, while hexanal enhanced the green aroma of SD. Finally, our results were validated through aroma recombination and addition experiments. This study provides a theoretical basis for improving the aroma of black tea.
Collapse
Affiliation(s)
- Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Han Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
18
|
Liang J, Wu H, Lu M, Li Y. HS-SPME-GC-MS untargeted metabolomics reveals key volatile compound changes during Liupao tea fermentation. Food Chem X 2024; 23:101764. [PMID: 39280217 PMCID: PMC11401112 DOI: 10.1016/j.fochx.2024.101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
This study used headspace solid-phase microextraction-gas chromatography-mass spectrometry and multivariate statistical analysis to comprehensively analyze the volatile components in Liupao tea samples throughout fermentation. In total, 1009 volatile organic compounds were detected and identified, including terpenoids, heterocyclic compounds, esters, ketones, hydrocarbons, alcohols, aromatics, and acids. Principal component and hierarchical cluster analyses, characterize the volatile components of Liupao tea samples were characterized at various fermentation stages. Orthogonal partial least squares discriminant analysis identified 248 differentiating compounds (VIP ≥ 1, P < 0.05, and |Log2FC| ≥ 1.0) during fermentation. K-means clustering analysis showed that 11 metabolites increased significantly throughout the fermentation process, whereas 31 metabolites decreased continuously. Annotation of these differential compounds revealed significant changes in sensory flavor characteristics in "green, sweet, fruity, floral, and woody" flavors. The results demonstrated significant variations in the volatile components of Liupao tea fermentation, along with notable changes in flavor characteristics.
Collapse
Affiliation(s)
- Jianfeng Liang
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
- Liupao Tea modern Industry College, Wuzhou University, Wuzhou 543002, China
| | - Hailin Wu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Mingfei Lu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Ya Li
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
- Liupao Tea modern Industry College, Wuzhou University, Wuzhou 543002, China
| |
Collapse
|
19
|
Wang Y, Deng G, Huang L, Ning J. Sensory-directed flavor analysis reveals the improvement in aroma quality of summer green tea by osmanthus scenting. Food Chem X 2024; 23:101571. [PMID: 39007121 PMCID: PMC11239469 DOI: 10.1016/j.fochx.2024.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Flower scenting is an effective way to enhance the aroma of green tea (GT), including those osmanthus scented green tea (OSGT). However, the mechanism of aroma enhancement by scenting is still unclear. Here, the volatiles of GT, OSGT, and osmanthus were detected by GC-MS. The total volatile content of OSGT was significantly increased compared to GT, with the flowery and coconut aromas enhanced. Furthermore, 17 of 139 volatiles were responsible for the enhancement by GC-olfactometry and their absolute odor activity values (OAVs). Aroma recombination, omission and addition experiments showed that dihydro-β-ionone, (E)-β-ionone, (E, E)-2,4-heptadienal, geraniol, linalool, α-ionone, and γ-decalactone were the key aroma volatiles with flowery or coconut aromas. Additionally, the dynamics of the key volatiles (OAVs >1) from different scenting durations were analyzed, proving that the optimal duration was 6-12 h. This study provides new insight into the mechanism of aroma formation during OSGT production.
Collapse
Affiliation(s)
- Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Guojian Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Lunfang Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| |
Collapse
|
20
|
Liang Y, Wang Z, Zhang L, Dai H, Wu W, Zheng Z, Lin F, Xu J, Huang Y, Sun W. Characterization of volatile compounds and identification of key aroma compounds in different aroma types of Rougui Wuyi rock tea. Food Chem 2024; 455:139931. [PMID: 38850976 DOI: 10.1016/j.foodchem.2024.139931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
In this study, we characterized the aroma profiles of different Rougui Wuyi rock tea (RGWRT) aroma types and identified the key aroma-active compounds producing these differences. The roasting process was found to have a considerable effect on the aroma profiles. Eleven aroma compounds, including linalool, β-ionone, geraniol, indole, and (E)-nerolidol, strongly affected the aroma profiles. An RGWRT aroma wheel was constructed. The rich RGWRT aroma was found to be dominated by floral, cinnamon-like, and roasty aromas. Human olfaction was correlated with volatile compounds to determine the aromatic characteristics of these compounds. Most key aroma-active compounds were found to have floral, sweet, and herbal aromas (as well as some other aroma descriptors). The differences in key compounds of different aroma types were found to result from the methylerythritol phosphate, mevalonic acid and shikimate metabolic pathways and the Maillard reaction. Linalool, geraniol, and (E,E)-2,4-heptadienal were found to spontaneously bind to olfactory receptors.
Collapse
Affiliation(s)
- Yilin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqiang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuming Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China
| | - Jie Xu
- Wuyi Star Tea Industrial Company Limited, Wuyishan 354301, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China.
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
21
|
Chen G, Zhu G, Xie H, Zhang J, Huang J, Liu Z, Wang C. Characterization of the key differential aroma compounds in five dark teas from different geographical regions integrating GC-MS, ROAV and chemometrics approaches. Food Res Int 2024; 194:114928. [PMID: 39232540 DOI: 10.1016/j.foodres.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Dark tea (DT) holds a rich cultural history in China and has gained sizeable consumers due to its unique flavor and potential health benefits. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), relative odor activity value (ROAV), and chemometrics approaches were used to detect and analyze aroma compounds differences among five dark teas from different geographical regions. The results revealed that the five DTs from different geographical regions differed in types, quantities, and relative concentrations of volatile compounds. A total of 1372 volatile compounds of were identified in the 56 DT samples by HS-SPME-GC-MS. Using ROAV and chemometrics approaches, based on ROAV>1 and VIP>1. Eighteen key aroma compounds can be used as potential indicators for DT classification, including dihydroactinidiolide, linalool, 1,2,3-trimethoxybenzene, geranyl acetone, 1,2,4-trimethoxybenzene, cedrol, 3,7-dimethyl-1,5,7-octatrien-3-ol, β-ionone, 4-ethyl-1,2-dimethoxybenzene, methyl salicylate, α-ionone, geraniol, linalool oxide I, linalool oxide II, 6-methyl-5-hepten-2-one, α-terpineol, 1,2,3-trimethoxy-5-methylbenzene, and 1,2-dimethoxybenzene. These compounds provide a certain theoretical basis for distinguishing the differences in five DTs from different geographical regions. This study provides a potential method for identifying the volatile substances in DTs and elucidating the differences in key aroma compounds. Abbreviations: DT, dark tea; FZT, Fuzhuan tea; LPT, Guangxi Liupao tea; QZT, Hubei Qingzhuan tea; TBT, Sichuan Tibetan tea; PET, Yunnan Pu-erh tea; ROAV, Relative odor activity value; OT, Odor threshold; HS-SPME, Headspace solid-phase microextraction; GC-MS, Gas chromatography-mass spectrometry; PCA, Principal components analysis; PLS-DA, Partial least squares-discriminant analysis; HCA, Hierarchical clustering analysis.
Collapse
Affiliation(s)
- Guohe Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Guangmei Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - He Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China; Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China; Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China; Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
22
|
Zhang W, Chen W, Pan H, Sanaeifar A, Hu Y, Shi W, Guo J, Ding L, Zhou J, Li X, He Y. Rapid identification of the aging time of Liupao tea using AI-multimodal fusion sensing technology combined with analysis of tea polysaccharide conjugates. Int J Biol Macromol 2024; 278:134569. [PMID: 39122062 DOI: 10.1016/j.ijbiomac.2024.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Identifying the aging time of Liupao Tea (LPT) presents a persistent challenge. We utilized an AI-Multimodal fusion method combining FTIR, E-nose, and E-tongue to discern LPT's aging years. Compared to single-source and two-source fusion methods, the three-source fusion significantly enhanced identifying accuracy across all four machine learning algorithms (Decision tree, Random forest, K-nearest neighbor, and Partial least squares Discriminant Analysis), achieving optimal accuracy of 98-100 %. Physicochemical analysis revealed monotonic variations in tea polysaccharide (TPS) conjugates with aging, observed through SEM imaging as a transition from lamellar to granular TPS conjugate structures. These quality changes were reflected in FTIR spectral characteristics. Two-dimensional correlation spectroscopy (2D-COS) identified sensitive wavelength regions of FTIR from LPT and TPS conjugates, indicating a high similarity in spectral changes between TPS conjugates and LPT with aging years, highlighting the significant role of TPS conjugates variation in LPT quality. Additionally, we established an index for evaluating quality of aging, which is sum of three fingerprint peaks (1029 cm-1, 1635 cm-1, 2920 cm-1) intensities. The index could effectively signify the changes in aging years on macro-scale (R2 = 0.94) and micro-scale (R2 = 0.88). These findings demonstrate FTIR's effectiveness in identifying aging time, providing robust evidence for quality assessment.
Collapse
Affiliation(s)
- Wenkai Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Pan
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Alireza Sanaeifar
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, United States
| | - Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wanghong Shi
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Liu X, Zhou F, Wen M, Jiang S, Long P, Ke JP, Han Z, Zhu M, Zhou Y, Zhang L. LC-MS and GC-MS based metabolomics analysis revealed the impact of tea trichomes on the chemical and flavor characteristics of white tea. Food Res Int 2024; 191:114740. [PMID: 39059930 DOI: 10.1016/j.foodres.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
To explore the influence of tea trichomes on the quality of white tea, liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS), and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to identify non-volatile and volatile compounds white tea without trichomes (WTwt) and pure trichomes (PT). It was found that the bitter and astringent compounds, caffeine (CAF), epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and flavonol glycosides, were mainly enriched in the WTwt, with 16.3-fold, 47.1-fold and 28.7-fold decrease in CAF and EGCG and ECG, respectively, and the content of these compounds in PT were lower than the taste thresholds. In PT, kaempferol-3-O-(p-coumaroyl)-glucoside and kaempferol-3-O-(di-p-coumaroyl)-glucoside were non-volatile marker compounds, and decanal was significant aroma contributor with rOAV = 250.86. Moreover, the compounds in trichomes mainly contributed to the fruity and floral aroma of white tea, among which benzyl alcohol, (E)-geranylacetone, decanal, dodecanal and 6-methyl-5-hepten-2-one were the crucial aroma components, which were 2.1, 1.7, 1.8, 1.4 and 2.2 times as much as the WTwt in the PT, respectively. In conclusion, trichomes can improve the quality of white tea by reducing the bitterness and astringency, increasing the umami, as well as enhancing the fruity and floral aromas.
Collapse
Affiliation(s)
- Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Feng Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yu Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Yan H, Li WX, Zhu YL, Lin ZY, Chen D, Zhang Y, Lv HP, Dai WD, Ni DJ, Lin Z, Zhu Y. Comprehensive comparison of aroma profiles and chiral free and glycosidically bound volatiles in Fujian and Yunnan white teas. Food Chem 2024; 448:139067. [PMID: 38547713 DOI: 10.1016/j.foodchem.2024.139067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 03/16/2024] [Indexed: 04/24/2024]
Abstract
The Fujian and Yunnan provinces in China are the most representative origins of white tea. However, the key differences in the chemical constituents of the two white teas have rarely been revealed. In this study, a comprehensive comparison of the aroma profiles, chiral volatiles, and glycosidically bound volatiles (GBVs) in Fujian and Yunnan white teas was performed, and 174 volatiles and 28 enantiomers, including 22 volatiles and six GBVs, were identified. Linalool, linalyl-β-primeveroside (LinPrim), and α-terpineol presented the opposite dominant configurations in Fujian and Yunnan white teas, and the chiral GBVs were firstly quantified with significant differences in the contents of R-LinPrim and β-d-glucopyranosides of (2R, 5R)-linalool oxide A and (2R, 5S)-linalool oxide B. Moreover, discrimination functions for Fujian and Yunnan white teas were created using nine key variables with excellent reliability and efficiency. These results provide a new method for objectively distinguishing authentic white teas according to geographical origin.
Collapse
Affiliation(s)
- Han Yan
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei-Xuan Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Ying-Lin Zhu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhi-Yuan Lin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dan Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Wei-Dong Dai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - De-Jiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
25
|
Gan S, Chen Y, Zhao L, Zhao X, Qiu T, Zhai X, Dai Q. Characterization of the aroma-active compounds in Xiaokeng green tea by three pretreatment methods combined with gas chromatography-olfactometry (GC-O). Food Res Int 2024; 187:114359. [PMID: 38763643 DOI: 10.1016/j.foodres.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Chinese Xiaokeng green tea (XKGT) possesses elegant and fascinating aroma characteristics, but its key odorants are still unknown. In this study, 124 volatile compounds in the XKGT infusion were identified by headspace-solid phase microextraction (HS-SPME), stir bar sorptive extraction (SBSE), and solvent extraction-solid phase extraction (SE-SPE) combined with gas chromatography-mass spectrometry (GC-MS). Comparing these three pretreatments, we found HS-SPME was more efficient for headspace compounds while SE-SPE was more efficient for volatiles with higher boiling points. Furthermore, SBSE showed more sensitive to capture ketones then was effective to the application of pretreatment of aroma analysis in green tea. The aroma intensities (AIs) were further identified by gas chromatography-olfactometry (GC-O). According to the AI and relative odor activity value (rOAV), 27 compounds were identified as aroma-active compounds. Quantitative descriptive analysis (QDA) showed that the characteristic aroma attributes of XKGT were chestnut-like, corn-like, fresh, and so on. The results of network analysis showed that (E, Z)-2,6-nonadienal, nonanal, octanal and nerolidol were responsible for the fresh aroma. Similarly, dimethyl sulfide, (E, E)-2,4-heptadienal, (E)-2-octenal and β-cyclocitral contributed to the corn-like aroma. Furthermore, indole was responsible for the chestnut-like and soybean-like aroma. This study contributes to a better understanding of the molecular mechanism of the aroma characteristics of XKGT.
Collapse
Affiliation(s)
- Shiya Gan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Yingqi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xiaoyi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Tong Qiu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Hefei 230036, People's Republic of China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
26
|
Liu X, Cai N, Cai Z, Li L, Ni H, Chen F. The effect of instant tea on the aroma of duck meat. Food Chem X 2024; 22:101401. [PMID: 38711775 PMCID: PMC11070817 DOI: 10.1016/j.fochx.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Tea products, such as instant tea, have been shown to improve the aroma of meat products. However, the mechanisms by which tea products enhance meat aroma have not been adequately explained. In this study, we analyzed the impact of instant tea on the aroma of duck meat. Our results showed that treatment with instant tea led to increases in floral, baked, and grassy notes while reducing fishy and fatty notes. Several alcohols, aldehydes, ketones, indole and dihydroactinidiolide exhibited significantly increased OAVs. Conversely, certain saturated aldehydes, unsaturated aldehydes and alcohols displayed significantly decreased OAVs. The enhanced floral, baked and grassy notes were attributed to volatile compounds present in instant tea. The reduction in fishy and fatty notes was linked to polyphenols in instant tea interacting with nonanal, undecanal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal, and 2,4-decadienal through hydrophobic interactions and electronic effects. This study enhances our understanding of how tea products improve meat aromas.
Collapse
Affiliation(s)
- Xieyuan Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Zhenzhen Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Feng Chen
- Department of Food Science & Human Nutrition, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
27
|
Ma D, Lin T, Zhao H, Li Y, Wang X, Di S, Liu Z, Liu M, Qi P, Zhang S, Jiao R. Development and comprehensive SBSE-GC/Q-TOF-MS analysis optimization, comparison, and evaluation of different mulberry varieties volatile flavor. Food Chem 2024; 443:138578. [PMID: 38301554 DOI: 10.1016/j.foodchem.2024.138578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Optimization of seven parameters of stir bar sorptive extraction (SBSE) on mulberry volatile components for the first time. A total of 347 volatile components were identified and quantified in 14 mulberry varieties, predominantly encompassing esters, aldehydes, terpenoids, hydrocarbons, ketones, alcohols, heterocyclics, acids, and phenols. Hexanal and (E)-2-hexenal were the dominant volatiles. Furthermore, 79 volatile compounds characterized by odor activity values (OAVs) > 1 were identified, making a significant contribution to the distinctive mulberry flavor. "Green" notes were the most intense, followed by "fatty" and "fruity". Utilizing odor ring charts, the volatile flavor characteristics of the 14 mulberry varieties could be intuitively distinguished. This study not only established a viable methodology for differentiating mulberry varieties but also laid a theoretical foundation for the quality evaluation and variety breeding of mulberry flavor.
Collapse
Affiliation(s)
- Di Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Yougui Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China.
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Mingqi Liu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Suling Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Rui Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, 310018, PR China
| |
Collapse
|
28
|
Medina-Orjuela ME, Barrios-Rodríguez YF, Carranza C, Amorocho-Cruz C, Gentile P, Girón-Hernández J. Enhancing analysis of neo-formed contaminants in two relevant food global commodities: Coffee and cocoa. Heliyon 2024; 10:e31506. [PMID: 38818199 PMCID: PMC11137541 DOI: 10.1016/j.heliyon.2024.e31506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Neo-formed contaminants (NFCs) are common in many foods, especially those subjected to high-temperature processing. Among these contaminants, products arising from the Maillard reaction, sugar reduction, thermal degradation of polyphenols and lipid oxidation, including acrylamide, furan, furfuryl alcohol, and hydroxymethylfurfural, are consistently linked to potential neoplastic effects. NFCs are found in globally traded commodities like coffee and cocoa, posing a significant risk due to their frequent consumption by consumers. A direct correlation exists between consumption frequency, exposure levels, and health risks. Hence, it's crucial to establish reliable methods to determine levels in both matrices, aiming to mitigate their formation and minimise risks to consumers. This review offers a comprehensive examination, discussion, and identification of emerging trends and opportunities to enhance existing methodologies for extracting and quantifying NFCs in coffee and cocoa. By presenting an in-depth analysis of performance parameters, we aim to guide the selection of optimal extraction techniques for quantifying individual NFCs. Based on the reviewed data, headspace extraction is recommended for furan, while solid and dispersive solid phase extractions are preferred for acrylamide when quantified using gas and liquid chromatography, respectively. However, it is worth noting that the reported linearity tests for certain methods did not confirm the absence of matrix effects unless developed through standard addition, leading to uncertainties in the reported values. There is a need for further research to verify method parameters, especially for determining NFCs like furfuryl alcohol. Additionally, optimising extraction and separation methods is essential to ensure complete compound depletion from samples. Ideally, developed methods should offer comprehensive NFC determination, reduce analysis time and solvent use, and adhere to validation parameters. This review discusses current methods for extracting and quantifying NFCs in coffee and cocoa, highlighting emerging trends and emphasising the need to improve existing techniques, especially for compounds like furfuryl alcohol.
Collapse
Affiliation(s)
- María E. Medina-Orjuela
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
| | - Yeison F. Barrios-Rodríguez
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
- i-Food, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46021, Valencia, Spain
| | - Carlos Carranza
- Escuela de ciencias agrícolas, pecuarias y del medio ambiente, Universidad Nacional Abierta a Distancia, Calle 14 Sur # 14 - 23, 111511, Bogotá, Colombia
| | - Claudia Amorocho-Cruz
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Joel Girón-Hernández
- Centro Surcolombiano de Investigación en Café (CESURCAFÉ), Universidad Surcolombiana, Av. Pastrana Borrero Carera 1, 410001, Neiva, Colombia
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
Li J, Han S, Mei X, Wang M, Han B. Changes in profiles of volatile compounds and prediction of the storage year of organic green tea during the long-term storage. Food Chem 2024; 437:137831. [PMID: 37897818 DOI: 10.1016/j.foodchem.2023.137831] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
In the present study, the volatile compounds in organic green tea with a continuous storage period (ranging from 1 to 16 years) were comprehensively analyzed and compared through SDE-GC-MS and chemometrics. The results revealed that the total of 124 volatiles were identified, and their total amount was increased with the prolongation of the storage years. Ketones, alcohols, esters, and aromatic hydrocarbons were the main types of volatiles in organic green tea, among which 26 volatile compounds were significantly correlated with storage years, and six volatile compounds that were most seriously affected by the storage years. The results of the support vector machine classification combined with multiple linear regression analysis showed that the content-period prediction model for the six volatile compounds can accurately predict the storage years of organic green tea. Therefore, this study offers novel insights into volatile compounds changes during the storage of green tea.
Collapse
Affiliation(s)
- Jia Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Hangzhou Tea & Chrysanthemum Technology Co. Ltd., Hangzhou 310018, China
| | - Xianshan Mei
- Zhejiang Meifeng Tea Industry Co., Ltd., Lishui 323000, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
30
|
Wang Z, Jin Q, Jiang R, Liu Y, Xie H, Ou X, Li Q, Liu Z, Huang J. Characteristic volatiles of Fu brick tea formed primarily by extracellular enzymes during Aspergillus cristatus fermentation. Food Res Int 2024; 177:113854. [PMID: 38225127 DOI: 10.1016/j.foodres.2023.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Fu brick tea (FBT) has unique "fungal flower" aroma traits, but its source of crucial aroma compounds is still controversial. Aspergillus cristatus is the dominant fungus that participated in the fermentation of FBT. In this study, volatiles of Aspergillus cristatus and corresponding fermented FBT were examined using GC × GC-Q-TOFMS. A total of 59 volatiles were shared by three strains of Aspergillus cristatus isolated from representative FBT. Among them, 1-octen-3-ol and 3-octanone were the most abundant. A total of 133 volatiles were screened as typical FBT volatiles from three FBTs fermented by the corresponding fungi. Aspergillus cristatus and FBT had only 29 coexisting volatiles, indicating that the volatiles of Aspergillus cristatus could not directly contribute to the aroma of FBT. The results of no significant correlation between volatile content in FBT and volatile content in Aspergillus cristatus suggested that intracellular metabolism of Aspergillus cristatus was not a direct driver of FBT aroma formation. Metabolic pathway analysis and proteomic analysis showed that the aroma in FBT was mainly formed by the enzymatic reaction of extracellular enzymes from Aspergillus cristatus. This study enriched our understanding of Aspergillus cristatus in the aroma formation process of FBT.
Collapse
Affiliation(s)
- Zhong Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - Qifang Jin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - Ronggang Jiang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - Yang Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - He Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China.
| | - Jian'an Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha, China.
| |
Collapse
|
31
|
Feng X, Chen M, Song H, Ma S, Ou C, Li Z, Hu H, Yang Y, Zhou S, Pan Y, Fan F, Gong S, Chen P, Chu Q. A systemic review on Liubao tea: A time-honored dark tea with distinctive raw materials, process techniques, chemical profiles, and biological activities. Compr Rev Food Sci Food Saf 2023; 22:5063-5085. [PMID: 37850384 DOI: 10.1111/1541-4337.13254] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Ming Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Zeqing Li
- College of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou, P. R. China
| | - Hao Hu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, P. R. China
| | - Yunyun Yang
- College of standardization, China Jiliang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
32
|
Xiao L, Yang C, Zhang X, Wang Y, Li Z, Chen Y, Liu Z, Zhu M, Xiao Y. Effects of solid-state fermentation with Bacillus subtilis LK-1 on the volatile profile, catechins composition and antioxidant activity of dark teas. Food Chem X 2023; 19:100811. [PMID: 37780291 PMCID: PMC10534189 DOI: 10.1016/j.fochx.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
In this study, the solid-state fermentation (SSF) of dark tea was carried out using Bacillus subtilis LK-1, which was isolated from Fu brick tea (FBT). The effects of SSF with B. subtilis on volatile organic compounds (VOCs), non-volatile metabolites, and antioxidant activities of dark tea was investigated. A total of 45 VOCs were identified, primarily consisting of ketones (18), hydrocarbons (8), aldehydes (7), and alcohols (6). Following fermentation, the content of key odor active substances such as linalool, β-ionone, and 3,5-octadiene-2-one significantly increased, resulting in an enhanced floral and fruity aroma of dark tea. Furthermore, new flavor substances like geranyl isovalerate and decanal were produced during SSF, enriching the aroma profile of dark tea. Non-ester catechins demonstrated a drastic increase, while ester catechins remarkably decreased after SSF. Furthermore, SSF led to a slight decrease in the total polyphenols content and antioxidant activity of dark tea. There is a close relationship between VOCs and the main non-volatile metabolites during SSF. Overall, this study highlighted the great impact of SSF with B. subtilis on the metabolites of dark tea and provided valuable insights into the role of bacteria in shaping the metabolite profile of FBT.
Collapse
Affiliation(s)
- Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghongwang Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
33
|
Xiong Y, Guan J, Wu B, Wang T, Yi Y, Tang W, Zhu K, Deng J, Wu H. Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose. Molecules 2023; 28:6979. [PMID: 37836821 PMCID: PMC10574234 DOI: 10.3390/molecules28196979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Using Meyerozyma guilliermondii YB4, which was isolated and screened from southern Sichuan pickles in the laboratory, as the experimental group, we investigated the changes in growth, total ester content, and volatile flavor substances of M. guilliermondii YB4 under different NaCl concentrations. The growth of M. guilliermondii YB4 was found to be inhibited by NaCl, and the degree of inhibition increased at higher NaCl concentrations. Additionally, the total ester content of the control group (CK) was significantly lower compared to the other groups (p < 0.05). The application of NaCl also resulted in distinct changes in the volatile profile of YB4, as evidenced by E-nose results. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to analyze the volatile compounds. A total of 148 and 86 volatiles were detected and identified using GC-MS and GC-IMS, respectively. Differential volatiles among the various NaCl concentrations in YB4 were determined by a variable importance in projection (VIP) analysis in partial least squares-discriminant analysis (PLS-DA). These differentially expressed volatiles were further confirmed by their relative odor activity value (ROAV) and odor description. Ten key contributing volatiles were identified, including ethanol, 1-pentanol, nonanal, octanal, isoamyl acetate, palmitic acid ethyl ester, acrolein, ethyl isobutanoate, prop-1-ene-3,3'-thiobis, and 2-acetylpyrazine. This study provides insights into the specificities and contributions of volatiles in YB4 under different NaCl concentrations. These findings offer valuable information for the development of aroma-producing yeast agents and the subsequent enhancement in the flavor of southern Sichuan pickles.
Collapse
Affiliation(s)
- Yiling Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Ju Guan
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Baozhu Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Tianyang Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanting Tang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Jing Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Huachang Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
34
|
Wen L, Sun L, Chen R, Li Q, Lai X, Cao J, Lai Z, Zhang Z, Li Q, Song G, Sun S, Cao F. Metabolome and Microbiome Analysis to Study the Flavor of Summer Black Tea Improved by Stuck Fermentation. Foods 2023; 12:3414. [PMID: 37761123 PMCID: PMC10527649 DOI: 10.3390/foods12183414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.
Collapse
Affiliation(s)
- Lianghua Wen
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China;
| | - Guang Song
- Guangzhou Yitang Biotechnology Co., Ltd., Guangzhou 510277, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China; (L.S.); (R.C.); (Q.L.); (X.L.); (J.C.); (Z.L.); (Z.Z.)
| | - Fanrong Cao
- College of Horticulture, South China Agricultural University, Guangzhou 510000, China;
| |
Collapse
|
35
|
Qiu Z, Liao J, Chen J, Chen P, Sun B, Li A, Pan Y, Liu H, Zheng P, Liu S. The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong. Foods 2023; 12:2067. [PMID: 37238885 PMCID: PMC10217579 DOI: 10.3390/foods12102067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The flavor and quality of tea largely depends on the cultivar from which it is processed; however, the cultivar effect on the taste and aroma characteristics of Hakka stir-fried green tea (HSGT) has received little attention. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluations were used to detect and predict the essential taste and aroma-contributing substances of HSGTs made from Huangdan (HD), Meizhan (MZ) and Qingliang Mountain (QL) cultivars. Orthogonal partial least squares data analysis (OPLS-DA) ranked four substances that putatively distinguished the tastes of the HSGTs, epigallocatechin gallate (EGCG) > theanine > epigallocatechin (EGC) > epicatechin gallate (ECG). Ten substances with variable importance in projections (VIPs) ≥ 1 and odor activation values (OAVs) ≥ 1 contributed to their overall aromas, with geranylacetone having the most significant effect on HD (OAV 1841), MZ (OAV 4402), and QL (OAV 1211). Additionally, sensory evaluations found that HD was relatively equivalent to QL in quality, and both were superior to MZ. HD had a distinct floral aroma, MZ had a distinct fried rice aroma, and QL had a balance of fried rice and fresh aromas. The results provide a theoretical framework for evaluating the cultivar effect on the quality of HSGT and put forward ideas for future HSGT cultivar development.
Collapse
Affiliation(s)
- Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jinmei Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peifen Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Yiyu Pan
- Meizhou Runqi Culture and Technology Development Co., Ltd., Meizhou 514000, China;
| | - Hongmei Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| |
Collapse
|