1
|
Chen M, Zhang M, Wang D, Xu S, Chen T, Li T, Zhang X, Wang L. Endogenous storage proteins influence Rice flavor: Insights from protein-flavor correlations and predictive modeling. Food Chem 2025; 478:143761. [PMID: 40058251 DOI: 10.1016/j.foodchem.2025.143761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/06/2025]
Abstract
This study investigated the correlation between endogenous storage proteins and aromatic compounds in rice, and their collective influence on rice eating quality. Six rice samples, varying in four endogenous storage proteins through gene editing genetically modified, were analyzed for their sensory characteristics and volatile compounds utilizing GC-E-nose, GC-MS, GC-MS-O, texture analyzer, and sensory evaluation. The results indicated that a total of 55 flavor compounds were identified, with 2-acetyl-1-pyrroline identified as the key aroma compound, positively correlated with prolamin content, while negatively correlated with glutelin and albumin. The concentrations of glutelin and prolamin significantly influence the odor, taste, and texture of rice. Additionally, six prediction models were evaluated, with the optimal Support Vector Regression (SVR) model selected for predicting rice flavor profiles based on protein content. This study provides a foundation for understanding key factors in rice aroma and texture, offering valuable guidance for gene-editing strategies aimed at enhancing rice flavor.
Collapse
Affiliation(s)
- Mengdi Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Dong Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Shunqian Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Tao Chen
- Suqian Product Quality Supervision and Testing Institute, Development Road 889, Economic and Technological Development Zone, Suqian 223800, China
| | - Ting Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
2
|
Li Y, Wang H, Liu G, Shi B, Zhu B, Gao L, Zhong K, Zhang Y, Zhao L, Li R, Shan B, Wang C, Wang S. An assessment of the sensory drivers influencing consumer preference in infant formula, assessed via sensory evaluation and GC-O-MS. Food Chem 2024; 455:139881. [PMID: 38823136 DOI: 10.1016/j.foodchem.2024.139881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Consumer partiality for food products is related to purchase and consumption behavior, and are influenced by sensory preferences. The sensory and chemical drivers behind consumer preference in the infant formula (IF) were analyzed. A total of 31 aroma-active compounds were identified, playing an important role in the production of off-flavors (especially fishy). Combined with the correlation analysis, the key aroma substances affecting the sensory attributes of IF were initially identified. A21, A22, B9 represented the key substances responsible for producing milky and creamy, while A2, A5, A11, A12, B5, C15, H5 primarily produced fishy. In addition, the two sensory attributes namely milky and creamy, and the T-sweet were more strongly correlated with consumer preference. Therefore, it can be concluded that consumers are more interested in the main flavor of the product than the off-flavor. These findings will inform the quality control of IF and the maintenance of sensory quality.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Houyin Wang
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Guirong Liu
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Bolin Shi
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100091, China
| | - Lipeng Gao
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Kui Zhong
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Lei Zhao
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China
| | - Ruotong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100091, China
| | - Bingqi Shan
- Heilongjiang Feihe Dairy Industrial Co. Ltd., Qiqihar 161000, China
| | - Chunguang Wang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100091, China
| | - Sisi Wang
- Key Laboratory of Food Sensory Analysis for State Market Regulation, 102200, China; China National Institute of Standardization, Beijing 102200, China.
| |
Collapse
|
3
|
Deng B, Li Y, Yang Y, Xie W. Advantages of UHT in retaining coconut milk aroma and insights into thermal changes of aroma compounds. Food Res Int 2024; 194:114937. [PMID: 39232549 DOI: 10.1016/j.foodres.2024.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Coconut milk products are susceptible to bacterial damage, necessitating sterilization methods that often compromise nutrient and aroma integrity. This study investigates the effects of different thermal sterilisation methods on coconut milk aroma using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). We assessed the impact of pasteurisation (PAS, 70 °C, 25 min), high-temperature sterilisation (HTS, 121.1 °C, 15 min), and ultra-high temperature sterilisation (UHT, 130 °C, 5 s) through clustered heat maps and correlation analyses. Significant differences were observed (p < 0.05), with 37 and 52 substances detected by HS-GC-IMS and HS-SPME-GC-MS, respectively, identifying 12 key aroma compounds. UHT treatment primarily reduced 8 acids, maintaining a compositional structure and sensory profile similar to raw coconut milk. PAS and HTS treatments decreased the sensory intensity of overall coconut milk aroma, creamy, and floral notes, correlating with the presence of 2-heptanol, nonanal, 4-methylvaleric acid, and 2-tridecanone. These methods increased cooked notes, associated with 5-methyl-3-heptanone, 3-butyn-1-ol, hydroxyacetone, and acetoin. Rancidity was linked to acids such as isobutyric acid, isovaleric acid, and heptanoic acid, with high temperatures effectively reducing these compounds. Prolonged temperature changes in PAS and HTS accelerated lipid oxidative degradation and the Maillard reaction, involving free fatty acids in the formation of alcohols, aldehydes, esters, and lactones. These findings provide a theoretical basis for studying coconut milk flavour deterioration.
Collapse
Affiliation(s)
- Baohua Deng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Jiangsu Susa Food Co., LTD., Taizhou 225324, China
| | - Yang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Ye Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China.
| |
Collapse
|
4
|
Liu Z, Liu T, Liu R, Zhou Q, Zhou Y, Zhang Y, Zheng M. Enzymatic Deacidification and Aroma Characteristics Analysis of Rapeseed Oil Using Self-Made Immobilized Lipase CALB@MCM-41-C 8. Foods 2024; 13:2539. [PMID: 39200466 PMCID: PMC11353416 DOI: 10.3390/foods13162539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Rapeseed oil is a widely consumed edible oil that contains varieties of beneficial micronutrients such as tocopherols and phytosterols; however, the high acid value due to increased free fatty acid can imperil the oil quality and safety. This paper proposed the enzymatic deacidification for high-acid rapeseed oil and simultaneous production of functional diacylglycerols (DAGs) catalyzed by self-made immobilized lipase CALB@MCM-41-C8. The results indicate that the carrier of molecular sieve MCM-41 exhibited a sufficient surface area of 1439.9 m2/g and a proper pore size of 3.5 nm, promoting the immobilization of lipase CLAB. Under the optimal reaction conditions, the acid value of rapeseed oil was largely decreased from 15.3 mg KOH/g to 1.7 mg KOH/g within 3 h, while DAG content was increased from 1.2% to 40.2%. The antioxidant stability of rapeseed oil was also increased from 4.3 h to 7.6 h after enzymatic deacidification. Besides, the deacidified rapeseed oil exhibited fatty, bitter almond aromas, compared to the picked-vegetable, spicy, and pungent aromas for high-acid oil. Finally, the catalytic stability and applicability of CALB@MCM-41-C8 was validated, thus demonstrating the great potential of CALB@MCM-41-C8 in green refining of edible oils and sustainable synthesis of functional lipids.
Collapse
Affiliation(s)
- Zhonghui Liu
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan 430205, China;
| | - Tieliang Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; (T.L.); (R.L.); (Q.Z.); (M.Z.)
| | - Run Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; (T.L.); (R.L.); (Q.Z.); (M.Z.)
| | - Qi Zhou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; (T.L.); (R.L.); (Q.Z.); (M.Z.)
| | - Yandaizi Zhou
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan 430205, China;
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; (T.L.); (R.L.); (Q.Z.); (M.Z.)
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; (T.L.); (R.L.); (Q.Z.); (M.Z.)
| |
Collapse
|
5
|
Wang H, Shang R, Gao S, Huang A, Huang H, Li W, Guo H. Characterization of key aroma compounds in a novel Chinese rice wine Xijiao Huojiu during its biological-ageing-like process by untargeted metabolomics. Heliyon 2024; 10:e34396. [PMID: 39130457 PMCID: PMC11315155 DOI: 10.1016/j.heliyon.2024.e34396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Xijiao Huojiu (Xijiao), an ancient Chinese rice wine (ACRW), is produced using traditional methods, which involve biological-ageing-like process and result in distinctive sensory profiles. However, its aroma composition is still unclear. In this study, the aroma characteristics of three samples with varying ageing times were examined. Xijiao_SCT, with a short cellar time, exhibited a strong fruity and floral aroma and a less grain-like aroma. Conversely, Xijiao_LCT, which had a long cellar time, had a deep cocoa- and caramel-like aroma. A total of 27 key odorants that greatly influenced the aroma characteristics of Xijiao were identified. Comparative studies were used to identify 12 key odorants that distinguish Xijiao from modern Chinese rice wine (MCRW) and grape wines (GW). Additionally, 13 dominant latent ageing markers differentiated Xijiao_SCT from Xijiao_LCT. Our results suggested that ACRW and MCRW have overlapping but distinct volatile metabolomic profiles, highlighting the characteristics of ACRW during ageing process.
Collapse
Affiliation(s)
- Han Wang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Rui Shang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suying Gao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ancheng Huang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Honghui Huang
- Shenzhen Haohao Biotechnology Company Ltd., Shenzhen, 518028, China
| | - Wenyang Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
6
|
Wang C, Yue Y, Yuan B, Deng Q, Liu Y, Zhou Q. Identification of the key aroma compounds in flaxseed milk using stir bar sorptive extraction, aroma recombination, and omission tests. Food Chem 2024; 446:138782. [PMID: 38402765 DOI: 10.1016/j.foodchem.2024.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Flaxseed milk is a plant-based dairy alternative that is rich in nutrients. Due to the low concentration of odor compounds in flaxseed milk, it cannot be completely extracted. This poses significant challenges for analysis. Therefore, this study developed a method suitable for extracting volatile compounds from flaxseed milk and compared it with three other extraction methods. It was found that Stir Bar Sorptive Extraction had the best extraction performance, identifying 39 odorants. Flavor dilution factors ranged from 1 to 512, with higher values observed for esters. 13 key odor compounds were identified (odor activity value > 1) using the external standard method for quantification; these included four aldehydes, three pyrazines, two alcohols, two esters, and two other compounds. Pyrazine compounds exhibited the highest concentrations. Aroma recombination and omission experiments showed that nine key odorants contributed significantly to the flavor profile of flaxseed milk, imparting aroma of cucumber, green, mushroom, fruity, sweet, and coconut.
Collapse
Affiliation(s)
- Chao Wang
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yang Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Binhong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Ye Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
7
|
Yan L, Xu Y, Yang F, Shi C, Liu Y, Bi S. Characterization of odor profiles of pea milk varieties and identification of key odor-active compounds by molecular sensory science approaches using soybean milk as a reference. Food Chem 2024; 445:138696. [PMID: 38354643 DOI: 10.1016/j.foodchem.2024.138696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
This study investigated the odor profiles of four pea milk varieties based on sensory evaluation, electronic nose (E-nose), and gas chromatography-mass spectrometry (GC-MS) with soybean milk as a reference. Compared to soybean milk, pea milk exhibited lower intensity of beany, oil-oxidation, and mushroom flavors as well as higher intensity of grassy/green and earthy flavors. ZW.6 pea milk was selected for further identification of key odor-active compounds using molecular sensory science approaches. Using headspace solid phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), and dynamic headspace sampling (DHS) combined with comprehensive gas chromatography-olfactometry-mass spectrometry (GC × GC-O-MS), 102 odor-active compounds were detected in ZW.6 pea milk. Among these, 19 compounds exhibiting high flavor dilution (FD) factors were accurately quantitated. Ten key odor-active compounds were ultimately identified through aroma recombination and omission experiment. Aldehydes and alcohols significantly contribute to the odor profile of pea milk.
Collapse
Affiliation(s)
- Lichang Yan
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, China
| | - Ying Xu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, China
| | - Fan Yang
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, China
| | - Chunhe Shi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, China.
| | - Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100048, China.
| |
Collapse
|
8
|
Xiong X, Wang W, Bi S, Liu Y. Application of legumes in plant-based milk alternatives: a review of limitations and solutions. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38881295 DOI: 10.1080/10408398.2024.2365353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In recent years, a global shift has been observed toward reducing the consumption of animal-derived foods in favor of healthier and more sustainable dietary choices. This has led to a steady growth in the market for plant-based milk alternatives (PBMAs). Projections suggest that this market will reach a value of USD 69.8 billion by 2030. Legumes, being traditional and nutritious ingredients for PMBAs, are rich in proteins, dietary fibers, and other nutrients, with potential health benefits such as anticancer and cardiovascular disease prevention. In this review, the application of 12 legumes in plant-based milk alternatives was thoroughly discussed for the first time. However, compared to milk, processing of legume-based beverages can lead to deficiencies such as nutritional imbalance, off-flavor, and emulsion stratification. Considering the potential and challenges associated with legume-based beverages, this review aims to provide a scientific comparison between legume-based beverages and cow's milk in terms of nutritional quality, organoleptic attributes and stability, and to summarize ways to improve the deficiencies of legume-based beverages in terms of raw materials and processing method improvements. In conclusion, the legume-based beverage industry will be better enhanced and developed by improving the issues.
Collapse
Affiliation(s)
- Xiaoying Xiong
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Wendong Wang
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Ye Liu
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
- Key Laboratory of Geriatric Nutrition and Health, (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| |
Collapse
|