1
|
Li H, Wang Y, Mustapha WAW, Zhang X, Zeng F, Liu J. Construction of fish scale (Cyprinus carpio L.) gelatin-fatty acid conjugate for loading curcumin: Effect of alkyl chain length on the interaction and stability. Int J Biol Macromol 2025; 304:140757. [PMID: 39922348 DOI: 10.1016/j.ijbiomac.2025.140757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
A fish scale (FS) gelatin-fatty acid conjugate (GFC) with alkyl chain lengths of 8-18 was constructed to increase the aqueous solubility of curcumin. The effect of alkyl chain length on the interaction between GFC and curcumin was characterized by dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy (FS), and isothermal titration calorimetry (ITC). The surface hydrophobicity (from 4987 ± 223.79 to 9982 ± 262.78) and curcumin loading capacity (from 8.20 ± 0.54 to 31.18 ± 1.41 μg/mg) of the GFC exhibited significant enhancements through increasing alkyl chain lengths from 8 to 18. This was accompanied by a reduction in particle size (from 661.5 ± 28.9 to 329.7 ± 6.6 nm) and ζ-potential (from -2.7 ± 0.92 to -26.8 ± 0.27). FS and ITC confirmed that GOC shared an optimal binding constant (Ka, 2.40 × 108 L·mol-1 and 3.47 × 105 M-1) and binding site (n, 1.45 and 2.276) with curcumin among GFCs. Increasing GFC's alkyl chain length also boosted the stability of entrapped curcumin against the thermal environment and ultraviolet radiation. These results could be beneficial for gelatin-based nanocarrier development and application.
Collapse
Affiliation(s)
- Haoxin Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yanxi Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Xiaoping Zhang
- Guizhou Fishery Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550025, China
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Liu
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| |
Collapse
|
2
|
Xu R, Gu Y, McClements DJ, Zheng L, Huang M, Zhao M. Ternary complex of soluble undenatured type II collagen-hydrophobic phytochemical-chondroitin sulfate facilitates high stability and targeted intestinal release properties to active substance. Int J Biol Macromol 2025; 288:138601. [PMID: 39662570 DOI: 10.1016/j.ijbiomac.2024.138601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Researchers have reported that soluble undenatured type II collagen (SC II) and hydrophobic phytochemicals (HPs) can ameliorate osteoarthritis (OA) through several mechanisms. However, the solubility of HPs, the stability of SC II, and the bio-accessibility of both need to be greatly improved before they can be successfully used for this purpose. In this study, two common HPs, curcumin (CUR, a hydrophobic polyphenol) and astaxanthin (AST, a carotenoid), were first loaded into SC II, which was then complexed with chondroitin sulfate (CS) to form ternary complexes: SC II-HP-CS. The results showed that SC II had the highest loading capacity for CUR (19.00 ± 0.76 μg/mg) and AST (21.15 ± 1.67 μg/mg) at pH 2.0. The CUR and AST bound to the SC II through non-covalent interactions (mainly hydrophobic interaction) and they both existed in an amorphous form within the complexes. In addition, the binding affinity and hydrophobic interaction between SC II and CUR was higher than those of AST. The thermal stability of the SC II-CUR-CS (Td = 118.0 ± 2.1 °C) and SC II-AST-CS (Td = 118.8 ± 3.5 °C) complexes were significantly higher than that of the SC II-CUR (Td = 104.27 ± 0.28 °C) and SC II-AST (Td = 103.8 ± 1.6 °C) complexes. SC II-HP complexes dissolved in gastric fluids, resulting in serious degradation of the SC II, while SC II-HP-CS complexes existed in an insoluble form to protect the triple helix structure of SC II (24-46 % retained). The CUR release (94.2 ± 5.8 %) and the free radical scavenging activity (84.6 ± 5.3 %) of SC II-CUR-CS was relatively high after 6 h of intestinal digestion, while AST in SC II-AST and SC II-AST-CS had low solubility and antioxidant activity. Therefore, the ternary complex of SC II-HP-CS was more advantageous as multifunctional delivery systems for the encapsulation, protection, and controlled release of hydrophobic polyphenols, which may provide guidance for the synergistic use of hydrophobic polyphenols and SC II to improve OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yue Gu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | | | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
3
|
Xing N, Tang S, Wang X, Guo C, Hu X, Yi J. Enhancing the Stability of Litsea Cubeba Essential Oil Emulsions Through Glycosylation of Fish Skin Gelatin via Dry Maillard Reaction. Foods 2024; 13:3847. [PMID: 39682919 DOI: 10.3390/foods13233847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Emulsions are widely utilized in food systems but often face stability challenges due to environmental stresses, such as pH, ionic strength, and temperature fluctuations. Fish skin gelatin (FSG), a promising natural emulsifier, suffers from limited functional properties, restricting its broader application. This study explored the enhancement of emulsion stability in Litsea cubeba essential oil systems through the glycosylation of fish skin gelatin (FSG) with dextran via the dry Maillard reaction. Among dextrans of varying molecular weights (10 kDa, 100 kDa, 200 kDa, and 500 kDa), the 200 kDa dextran exhibited the best emulsification performance, achieving a remarkable 160.49% increase in stability index. The degree of grafting (DG) increased with molecular weight, peaking at 34.77% for the 500 kDa dextran, followed by 23.70% for the 200 kDa variant. The particle size of the FSG-Dex 200 kDa conjugate emulsion was reduced to 639.1 nm, compared to 1009-1146 nm for the unmodified FSG, while hydrophobicity improved by 100.56%. The zeta potential values approached 30 mV, indicating enhanced stability. Furthermore, glycosylation significantly improved antioxidant activity, as evidenced by increased radical scavenging capacity in both DPPH and ABTS assays. These findings underscore the potential of glycosylated FSG as a natural emulsifier in food applications.
Collapse
Affiliation(s)
- Naiwen Xing
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| | - Shikang Tang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| | - Xuejiao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China
| |
Collapse
|
4
|
Li H, Mustapha WAW, Liu J, Zhang X. Self-assembled nanoparticles of acid-induced fish ( Cyprinus carpio L.) scale gelatin: Structure, physicochemical properties, and application for loading curcumin. Food Chem X 2024; 21:101230. [PMID: 38426076 PMCID: PMC10901859 DOI: 10.1016/j.fochx.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
This work expands the functionality of fish scale gelatin (FSG) as a carrier of hydrophobic bioactive substances. The hydrophobicity of FSG was enhanced to promote its interaction with hydrophobic curcumin and to increase its bioavailability. This results in a remarkable increase in the curcumin loading capacity of acid-hydrolyzed FSG (HFSG) from 1.08 ± 0.08 μg/mg (0 h) to 9.15 ± 0.21 μg/mg (3 h). The amino acid composition indicated that acid hydrolysis effectively increased the ratio of hydrophobic amino acids of FSG. Acid hydrolysis facilitated the transformation of the α-helical conformation into a β-sheet structure. Hydrophobic interactions between HFSG and curcumin were strengthened by moderate acid hydrolysis. A sustained-release profile emerged for the curcumin-loaded HFSG during simulated gastrointestinal digestion, thereby improving the bioaccessibility and bioavailability of curcumin. These findings contribute to the application of acid hydrolysis in modifying FSG for enhanced hydrophobicity and curcumin loading capacity in the food industry.
Collapse
Affiliation(s)
- Haoxin Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Jia Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- School of Liquor & Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaoping Zhang
- Guizhou Fishery Research Institute, Guizhou Academy of Agricultural Science, Guiyang 550025, China
| |
Collapse
|
5
|
Flores-Espinoza AI, Garcia-Contreras R, Guzman-Rocha DA, Aranda-Herrera B, Chavez-Granados PA, Jurado CA, Alfawaz YF, Alshabib A. Gelatin-Chitosan Hydrogel Biological, Antimicrobial and Mechanical Properties for Dental Applications. Biomimetics (Basel) 2023; 8:575. [PMID: 38132514 PMCID: PMC10742194 DOI: 10.3390/biomimetics8080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Chitosan, a natural polysaccharide sourced from crustaceans and insects, is often used with hydrogels in wound care. Evaluating its cytotoxicity and antimicrobial properties is crucial for its potential use in dentistry. OBJECTIVE To investigate the mechanical properties of gelatin hydrogels based on decaethylated chitosan and antimicrobial activity against Streptococcus mutans and their biological effects with stem cells from apical papilla (SCAPs). MATERIAL AND METHODS Gelatin-chitosan hydrogels were synthesized at concentrations of 0%, 0.2% and 0.5%. Enzymatic and hydrolytic degradation, along with swelling capacity, was assessed. Fourier transform infrared spectroscopy (FTIR) analysis was employed to characterize the hydrogels. The interaction between hydrogels and SCAPs was examined through initial adhesion and cell proliferation at 24 and 48 h, using the Thiazolyl Blue Tetrazolium Bromide (MTT assay). The antimicrobial effect was evaluated using agar diffusion and a microdilution test against S. mutans. Uniaxial tensile strength (UTS) was also measured to assess the mechanical properties of the hydrogels. RESULTS The hydrogels underwent hydrolytic and enzymatic degradation at 30, 220, 300 min and 15, 25, 30 min, respectively. Significantly, (p < 0.01) swelling capacity occurred at 20, 40, 30 min, respectively. Gelatin-chitosan hydrogels' functional groups were confirmed using vibrational pattern analysis. SCAPs proliferation corresponded to 24 h = 73 ± 2%, 82 ± 2%, 61 ± 6% and 48 h = 83 ± 11%, 86 ± 2%, 44 ± 2%, respectively. The bacterial survival of hydrogel interaction was found to be 96 ± 1%, 17 ± 1.5% (p < 0.01) and 1 ± 0.5% (p < 0.01), respectively. UTS showed enhanced (p < 0.05) mechanical properties with chitosan presence. CONCLUSION Gelatin-chitosan hydrogels displayed favorable degradation, swelling capacity, mild dose-dependent cytotoxicity, significant proliferation with stem cells from apical papilla (SCAPs), substantial antimicrobial effects against S. mutans and enhanced mechanical properties. These findings highlight their potential applications as postoperative care dressings.
Collapse
Affiliation(s)
- Andrea Itzamantul Flores-Espinoza
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Dulce Araceli Guzman-Rocha
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES), Leon Unit, National Autonomous University of Mexico (UNAM), Leon 37689, Mexico; (A.I.F.-E.); (R.G.-C.); (D.A.G.-R.); (B.A.-H.); (P.A.C.-G.)
| | - Carlos A. Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA;
| | - Yasser F. Alfawaz
- Department of Restorative Dentistry, King Saud University College of Dentistry, Riyadh 11545, Saudi Arabia;
| | - Abdulrahman Alshabib
- Department of Restorative Dentistry, King Saud University College of Dentistry, Riyadh 11545, Saudi Arabia;
| |
Collapse
|