1
|
Katherinatama A, Asikin Y, Shimoda K, Shimomura M, Mitsube F, Takara K, Wada K. Characterization of Free and Glycosidically Bound Volatile and Non-Volatile Components of Shiikuwasha ( Citrus depressa Hayata) Fruit. Foods 2024; 13:3428. [PMID: 39517212 PMCID: PMC11544857 DOI: 10.3390/foods13213428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Shiikuwasha, a citrus fruit native to Okinawa, Japan, has various cultivation lines with distinct free volatile and non-volatile components. However, the glycosylated volatiles, which are sources of hidden aromas, remain unknown. This study aimed to characterize the chemical profiles of free and glycosidically bound volatile as well as non-volatile components in the mature fruits of six Shiikuwasha cultivation lines: Ishikunibu, Izumi kugani-like, Kaachi, Kohama, Nakamoto seedless, and Ogimi kugani. Free volatiles were analyzed using solid-phase microextraction-gas chromatography-mass spectrometry. Glycosides were collected via solid-phase extraction and hydrolyzed with β-glucosidase, and the released volatiles were measured. Additionally, the non-volatile components were determined using non-targeted proton nuclear magnetic resonance analysis. Total free and bound volatiles ranged from 457 to 8401 µg/L and from 104 to 548 µg/L, respectively, and the predominant free volatiles found were limonene, γ-terpinene, and p-cymene. Twenty volatiles were released from glycosides, including predominant 1-hexanol and benzyl alcohol, with Kaachi and Ogimi kugani showing higher concentrations. Principal component analysis (PCA) revealed that taste-related compounds like sucrose, citrate, and malate influenced line differentiation. The PCA of the combined data of free and bound volatile and non-volatile components showed flavor component variances across all lines. These findings provide valuable insights into the chemical profiles of Shiikuwasha fruits for fresh consumption and food and beverage processing.
Collapse
Affiliation(s)
- Aldia Katherinatama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Kazuki Shimoda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Momoko Shimomura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
| | - Fumimasa Mitsube
- Okinawa Prefectural Agricultural Research Center Nago Branch, 4605-3, Nago 905-0012, Okinawa, Japan
- Hokubu Agriculture, Forestry and Fisheries Promotion Center, Okinawa Prefectural Government, 1-13-11 Ominami, Nago 905-0015, Okinawa, Japan
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara 903-0213, Okinawa, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| |
Collapse
|
2
|
Martinidou E, Michailidis M, Ziogas V, Masuero D, Angeli A, Moysiadis T, Martens S, Ganopoulos I, Molassiotis A, Sarrou E. Comparative Evaluation of Secondary Metabolite Chemodiversity of Citrus Genebank Collection in Greece: Can the Peel be More than Waste? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9019-9032. [PMID: 38613500 PMCID: PMC11190985 DOI: 10.1021/acs.jafc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Citrus fruits are among the most economically important crops in the world. In the global market, the Citrus peel is often considered a byproduct but substitutes an important phenotypic characteristic of the fruit and a valuable source of essential oils, flavonoids, carotenoids, and phenolic acids with variable concentrations. The Mediterranean basin is a particularly dense area of autochthonous genotypes of Citrus that are known for being a source of healthy foods, which can be repertoires of valuable genes for molecular breeding with the focus on plant resistance and quality improvement. The scope of this study was to characterize and compare the main phenotypic parameters (i.e., peel thickness, fruit volume, and area) and levels of bioactive compounds in the peel of fruits from the local germplasm of Citrus in Greece, to assess their chemodiversity regarding their polyphenolic, volatile, and carotenoid profiles. A targeted liquid chromatographic approach revealed hesperidin, tangeretin, narirutin, eriocitrin, and quercetin glycosides as the major polyphenolic compounds identified in orange, lemon, and mandarin peels. The content of tangeretin and narirutin followed the tendency mandarin > orange > lemon. Eriocitrin was a predominant metabolite of lemon peel, following its identification in lower amounts in mandarin and at least in the orange peel. For these citrus-specific metabolites, high intra- but also interspecies chemodiversity was monitored. Significant diversity was found in the essential oil content, which varied between 1.2 and 3% in orange, 0.2 and 1.4% in mandarin, and 0.9 and 1.9% in lemon peel. Limonene was the predominant compound in all Citrus species peel essential oils, ranging between 88 and 93% among the orange, 64 and 93% in mandarin, and 55 and 63% in lemon cultivars. Carotenoid analysis revealed different compositions among the Citrus species and accessions studied, with β-cryptoxanthin being the most predominant metabolite. This large-scale metabolic investigation will enhance the knowledge of Citrus peel secondary metabolite chemodiversity supported by the ample availability of Citrus genetic resources to further expand their exploitation in future breeding programs and potential applications in the global functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Eftychia Martinidou
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
| | - Michail Michailidis
- Laboratory
of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Vasileios Ziogas
- Intsitute
of Olive Tree, Subtropical Plants and Viticulture, ELGO−DIMITRA, Chania 73134, Greece
| | - Domenico Masuero
- Fondazione
Edmund Mach, Centro Ricerca e Innovazione, 38098 San Michele
all’Adige, Trento, Italy
| | - Andrea Angeli
- Fondazione
Edmund Mach, Centro Ricerca e Innovazione, 38098 San Michele
all’Adige, Trento, Italy
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
- Department
of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - Stefan Martens
- Fondazione
Edmund Mach, Centro Ricerca e Innovazione, 38098 San Michele
all’Adige, Trento, Italy
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
| | - Athanassios Molassiotis
- Laboratory
of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Eirini Sarrou
- Institute of Plant Breeding and Genetic
Resources, ELGO−DIMITRA, Thessaloniki 57001, Greece
| |
Collapse
|