1
|
Coimbra PPS, Teixeira ADC, Trindade MEF, Brito GO, Antonio ADS, Souza L, Silva-E-Silva ACAGD, Pereira HMG, Veiga-Junior VFD, Felzenszwalb I, Teodoro AJ, Araujo-Lima CF. Beetroot peel flour: Characterization, betalains profile, in silico ADMET properties and in vitro biological activity. Food Chem 2025; 476:143402. [PMID: 39965349 DOI: 10.1016/j.foodchem.2025.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
The use of vegetable residues as a source of bioactive components is a global trend. The production of flours reintroduces these materials into the productive chain and extend their shelf-life. Processing may reduce the diversity of pigments present in the fresh matter. We analysed a beetroot peel flour (BPF) that presented relevant protein and fibre contents and preserved the colour of the in natura beetroot (Beta vulgaris L.) due to the presence of betacyanins and betaxanthins. The bioavailability, pharmacokinetics and mutagenicity of the pigments were predicted using bioinformatics. No mutagenicity was confirmed according to the OECD guidelines. A chemoprotective effect and cancer cell anti-clone activities were observed. BPF processing ensured a good nutritional value and maintained this product as a good source of bioactive compounds and of pigments with antitumor activity, suggesting this vegetable residue as a food industry pigments source for use in the elaboration of functional products.
Collapse
Affiliation(s)
- Pedro Paulo Saldanha Coimbra
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil; Integrated Environmental Mutagenesis Laboratory, Department of Genetics and Molecular Biology, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adrielli de Carvalho Teixeira
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil; Integrated Environmental Mutagenesis Laboratory, Department of Genetics and Molecular Biology, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gabriel Oliveira Brito
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil; Integrated Environmental Mutagenesis Laboratory, Department of Genetics and Molecular Biology, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ananda da Silva Antonio
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lays Souza
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Henrique Marcelo Gualberto Pereira
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Nutrition and Dietetics, Faculty of Nutrition, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Carlos Fernando Araujo-Lima
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil; Integrated Environmental Mutagenesis Laboratory, Department of Genetics and Molecular Biology, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Leal-Alcazar MC, Bautista-Palestina F, Rocha-Pizaña MDR, Mojica L, Hernández-Álvarez AJ, Luna-Vital DA. Extraction, stabilization, and health application of betalains: An update. Food Chem 2025; 481:144011. [PMID: 40184927 DOI: 10.1016/j.foodchem.2025.144011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Betalains are nitrogenous compounds principally produced by a select group of plants of the Caryophyllales order, characterized by the vibrant coloration on bracts, flowers, leaves, seeds, and fruits. Betalains are produced by tyrosine metabolism and derived from a common precursor: betalamic acid. They are categorized into two principal groups: betacyanins and betaxanthins. Their technological importance is of great interest to the food industry due to their role as a natural pigment. Still, in recent years, it also relied on its high biological potential such as free-radical scavenging, anti-inflammatory, anti-cancer, and anti-diabetic, among other applications. However, challenges related to their bioavailability and low stability have to be addressed. The review summarizes and analyses the most current advances in extraction methods to preserve their structure, the novel trends that guarantee their stability, and the most explored health applications of betalain extracts from various plant sources.
Collapse
Affiliation(s)
- Mariana C Leal-Alcazar
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnológico de Monterrey, School of Engineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Frida Bautista-Palestina
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnológico de Monterrey, School of Engineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - María Del R Rocha-Pizaña
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, NatProLab, Department of Bioengineering, School of Engineering and Science, Av. Atlixcáyotl 5718, C.P, 72453, Puebla, Puebla, Mexico
| | - Luis Mojica
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico
| | | | - Diego A Luna-Vital
- Tecnológico de Monterrey, Institute for Obesity Research, School of Bioengineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnológico de Monterrey, School of Engineering and Science, México. Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, NatProLab, Department of Bioengineering, School of Engineering and Science, Av. Atlixcáyotl 5718, C.P, 72453, Puebla, Puebla, Mexico.
| |
Collapse
|
3
|
Ştefănescu C, Voştinaru O, Mogoşan C, Crişan G, Balica G. The Neuroprotective Potential of Betalains: A Focused Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:994. [PMID: 40219061 PMCID: PMC11990121 DOI: 10.3390/plants14070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Betalains are natural, hydrophilic pigments present in a variety of plants from the order Caryophyllales, extensively used as non-toxic food colorants and antioxidants. In recent decades, betalains have been intensively researched, with numerous studies confirming their anti-inflammatory, antioxidant, antimicrobial, and antinociceptive properties. More recently, due to a significant increase in the aging population worldwide, there has been growing interest in the study of preventive effects of betalains on age-related, degenerative brain diseases. The aim of this review is to evaluate the potential neuroprotective role of betalains in the prevention of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease, as well as other types of neurodegenerative and ischemic brain injuries. Preclinical in vivo and in vitro pharmacological studies investigating the neuroprotective effects of betalains are reviewed, with a focus on the putative mechanisms of action. Available studies in humans are also presented.
Collapse
Affiliation(s)
- Cristina Ştefănescu
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (C.Ş.); (G.C.); (G.B.)
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Cristina Mogoşan
- Department of Pharmacology, Physiology and Physiopathology, Iuliu Hatieganu University of Medicine and Pharmacy, 6 L. Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (C.Ş.); (G.C.); (G.B.)
| | - Georgeta Balica
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Gh. Marinescu Street, 400337 Cluj-Napoca, Romania; (C.Ş.); (G.C.); (G.B.)
| |
Collapse
|
4
|
Sabir IA, Manzoor MA, Khan I, Hu X, Chen J, Qin Y. Emerging Trends in Secondary Metabolite Research in Caryophyllales: Betalains and Their Roles in Plant Adaptation and Defense Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2249-2265. [PMID: 39818758 DOI: 10.1021/acs.jafc.4c10283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Betalains, a distinctive group of nitrogen-containing pigments exclusive to the Caryophyllales order, possess diverse biological activities such as antioxidant, anti-inflammatory, and antimicrobial properties, making them highly valuable for applications in food, nutraceutical, and pharmaceutical industries. This Review provides a comprehensive analysis of betalain biosynthesis, structural diversity, and ecological significance, highlighting their roles in enhancing stress resilience, adaptation mechanisms, and plant evolutionary strategies. The evolutionary development of betalains is explored, revealing their emergence through gene duplication events and providing insights into their mutual exclusivity with anthocyanins. This study utilizes comparative genetics and advanced molecular tools to uncover the intricate regulatory networks involving transcription factors such as MYB, bHLH, WRKY, and SPL, which govern betalain biosynthesis. Furthermore, the Review discusses innovative transgenic studies that introduce betalains into non-native species, demonstrating their potential to enhance stress tolerance and boost agricultural productivity. While significant progress has been made in understanding betalain biosynthesis pathways, the evolutionary relationships with anthocyanins and the specific ecological functions of betalains in plants remain areas of ongoing exploration. Future research directions include integrating chemotaxonomic studies, molecular phylogenetics, and multiomics approaches to unravel the full spectrum of betalain functions and regulatory mechanisms. Such studies are essential to deepening our understanding of these vibrant pigments and their evolutionary implications, offering new opportunities for biotechnological innovations and sustainable agricultural practices. This Review stands out by combining genetic, ecological, and evolutionary perspectives, providing novel insights into the multifunctionality of betalains and their potential to drive future advancements in plant science and biotechnology.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Imran Khan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinglong Hu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables and Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Martinez RM, Melo CPB, Pinto IC, Mendes-Pierotti S, Vignoli JA, Verri WA, Casagrande R. Betalains: A Narrative Review on Pharmacological Mechanisms Supporting the Nutraceutical Potential Towards Health Benefits. Foods 2024; 13:3909. [PMID: 39682981 DOI: 10.3390/foods13233909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Betalains are naturally occurring pigments sourced mainly from Beta vulgaris (beetroot), Hylocereus spp. (dragon fruit), Amaranthus spp., and Opuntia spp. Betalains are widely used for their vibrant colors and health-promoting properties. These nitrogenous, water-soluble pigments are crucial colorants in the food industry, responsible for the red, purple, and yellow plant tissues, predominantly in the order Caryophyllales. They are grouped into betacyanins, with reddish-violet hues, and betaxanthins, yellow to orange. Examples include beetroot stems for betacyanins and yellow pitaya pulp for betaxanthins. Several pharmacological activities were reviewed in the scientific literature, describing their potential implications for human health. In this review, we focused on the main and latest studies on the pharmacological effects and mechanisms of betalains, including antioxidant, anti-inflammatory, antihypertensive, hypolipidemic, antidiabetic, hepatoprotective, neuroprotective, anticancer, and antimicrobial properties, in both in vitro and in vivo studies. Overall, betalain consumption is considered safe, with no major adverse effects or allergic reactions reported. We also approached topics such as the pharmacokinetics, bioavailability, stability, and enhanced stabilization of betalains. This article provides a comprehensive overview of bioactive potential of betalains, highlighting the biochemical mechanisms involved. The current knowledge broadens the clinical applicability of betalains, making them potential sources of nutraceutical compounds that can be used to develop functional foods.
Collapse
Affiliation(s)
- Renata M Martinez
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Cristina P B Melo
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Ingrid C Pinto
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Soraia Mendes-Pierotti
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| | - Josiane A Vignoli
- Department of Biochemistry and Biotechnology, Centre of Exact Sciences, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Waldiceu A Verri
- Department of Immunology, Parasitology and General Pathology, Biological Sciences Center, Londrina State University, Londrina CEP 86055-900, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Center, Londrina State University, Londrina CEP 86039-440, Brazil
| |
Collapse
|
6
|
Ko GP, Jo H, Kim J, Kim JS, Boo KH, Kim CS. Enterotype-Specific Effects of Red Beetroot ( Beta vulgaris L.) Powder and Betanin on Human Gut Microbiota: A Preliminary Study Based on In Vitro Fecal Fermentation Model. Life (Basel) 2024; 14:1391. [PMID: 39598189 PMCID: PMC11595470 DOI: 10.3390/life14111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Red beetroots, rich in betanin, may act as prebiotics and impact gut microbiota. Because the human gut microbiota is unique to each person, the effectiveness of prebiotics varies with the enterotype. In this study, we hypothesized that the effects of red beetroot powder (RP) and betanin pigment (BP) would differ depending on the enterotype. Fecal samples from 30 subjects were analyzed and categorized into three enterotypes: Phocaeicola, Prevotella, and Bifidobacterium. Feces were collected from one representative subject from each enterotype cluster for fermentation. Results showed that RP and BP affected microbiota composition and short-chain fatty acid (SCFA) production differently across enterotypes. The Bifidobacterium cluster showed significantly reduced alpha diversity, with the direction of change in the gut microbiota composition being different from that of other subjects. Additionally, SCFAs significantly increased, with the highest increase in the Bifidobacterium cluster. In this cluster, metabolic pathways related to SCFAs (i.e., starch and sucrose metabolism and glycolysis/gluconeogenesis) were altered. Conversely, Prevotella-dominant feces exhibited fewer changes in SCFAs and a lower increase in Bifidobacterium abundance than the others. These findings highlight that RP and BP elicit enterotype-specific responses in the gut microbiota composition and SCFA production, emphasizing the importance of enterotypes in personalized nutrition.
Collapse
Affiliation(s)
- Gwang-Pyo Ko
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
| | - Hyejun Jo
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
| | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
- Jeju Institute of Korean Medicine, Jeju 63309, Republic of Korea
| | - Jeong Seon Kim
- Jeju Special Self-Governing Province Agricultural Research & Extension Services, Seogwipo-si 63556, Republic of Korea;
| | - Kyung-Hwan Boo
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
| | - Chang Sook Kim
- Faculty of Biotechnology, Jeju National University, Jeju 63243, Republic of Korea; (G.-P.K.); (H.J.); (K.-H.B.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
7
|
Mirsalami SM, Mirsalami M. Effects of potato extract on betalains, antioxidant activity, and sensory preference in buttermilk through fermentation with Lactobacillus acidophilus and Streptococcus salivarius. FUTURE FOODS 2024; 9:100357. [DOI: 10.1016/j.fufo.2024.100357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
|