1
|
Tayh G, Nsibi F, Chemli K, Daâloul-Jedidi M, Abbes O, Messadi L. Occurrence, antibiotic resistance and molecular characterisation of Shiga toxin-producing Escherichia coli isolated from broiler chickens in Tunisia. Br Poult Sci 2024; 65:751-761. [PMID: 38967914 DOI: 10.1080/00071668.2024.2368906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 07/06/2024]
Abstract
1. Shiga toxin-producing Escherichia coli (STEC) strains are associated with disease outbreaks which cause a public health problem. The aim of this study was to determine the frequency of STEC strains, their virulence factors, phylogenetic groups and antimicrobial resistance profiles in broiler chickens.2. A total of 222 E.coli isolates were collected from the caecum of chickens intended to be slaughtered. Antibiotic susceptibility was tested against 21 antimicrobial agents and ESBL phenotype was assessed by double-disk synergy test. The presence of STEC virulence genes stx1, stx2,eaeA and ehxA was detected by PCR. The identification of STEC serogroups was realised by PCR amplification. Additive virulence genes, phylogenetic groups and integrons were examined among the STEC isolates.3. Out of 222 E.coli isolates, 72 (32%) were identified as STEC strains and the most predominant serogroups were O103, O145 and O157. Shiga toxin gene 1 (stx1) was found in 84.7% (61/72) of the STEC strains, and eae and stx2 were detected in 38.8% and 13.8%, respectively. The ESBL phenotype was documented in 48.6% (35/72) of isolates. Most of the isolates (90.3%) carried class 1 integron with the gene cassette encoding resistance to trimethoprim (dfrA) and streptomycin (aadA) in 31.9% of the isolates. Class 2 integron was identified in 36.1% of isolates.4. Broilers can be considered as a reservoir of STEC strains which have high virulence factors and integrons that might be transmitted to other chickens, environments and humans. It is important to undertake surveillance and efficient control measures in slaughterhouses and farms to control measures of STEC bacteria.
Collapse
Affiliation(s)
- G Tayh
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - F Nsibi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - K Chemli
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - M Daâloul-Jedidi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| | - O Abbes
- DICK Company, Poulina Group Holding, Ben Arous, Tunisia
| | - L Messadi
- Department of Microbiology and Immunology, National School of Veterinary Medicine, University of Manouba, Ariana, Tunisia
| |
Collapse
|
2
|
Colello R, Baigorri M, Del Canto F, González J, Rogé A, van der Ploeg C, Sánchez Chopa F, Sparo M, Etcheverría A, Padola NL. Occurrence and genetic characterization of Shiga toxin-producing Escherichia coli on bovine and pork carcasses and the environment from transport trucks. World J Microbiol Biotechnol 2023; 39:174. [PMID: 37115263 DOI: 10.1007/s11274-023-03624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe diseases. The ability of STEC to produce disease is associated with Shiga toxin (Stx) production. We investigated the occurrence of STEC on bovine and pork carcasses and walls of trucks where they were transported, and we characterized virulence genes and serotypes of STEC strains. We compared the whole genomic sequencing of a STEC O157:H7 strain isolated from a bovine carcass in this work and a STEC O157:H7 strain isolated from a child with HUS, both isolated in 2019. We studied the relationship between these isolates and others collected in the database. The results show a 40% of STEC and two different serogroups were identified (O130 and O157). STEC O157:H7 were isolated from bovine carcasses and harbored stx2, eae, ehxA, katP, espP, stcE, ECSP_0242/1773/2687/2870/2872/3286/3620 and were classified as lineage I/II. In STEC non-O157 isolates, three isolates were isolated from bovine carcasses and harbored the serogroup O130 and one strain isolated from pork carcasses was O-non-typeable. All STEC non-O157 harbored sxt1 gene. The analysis from the whole genome showed that both STEC O157:H7 strains belonged to the hypervirulent clade 8, ST11, phylogroup E, carried the allele tir 255 T > A T, and they were not clonal. The analysis of information allows us to conclude that the STEC strains circulate in pork and bovine carcasses arriving in transport. This situation represents a risk for the consumers and the need to implement an integrated STEC control in the food chain.
Collapse
Affiliation(s)
- Rocío Colello
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina.
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina.
| | - Manuela Baigorri
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana González
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Ariel Rogé
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Claudia van der Ploeg
- Servicio Antígenos y Antisueros, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Federico Sánchez Chopa
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Mónica Sparo
- Laboratorio de Microbiología Clínica, Hospital Ramón Santamarina, Tandil, Buenos Aires, Argentina
| | - Analía Etcheverría
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| | - Nora Lía Padola
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA- CICPBA- CONICET, Tandil, Buenos Aires, Argentina
| |
Collapse
|
3
|
Li H, Geng W, Zhang M, He Z, Haruna SA, Ouyang Q, Chen Q. Qualitative and quantitative analysis of volatile metabolites of foodborne pathogens using colorimetric-bionic sensor coupled robust models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Characterization of Escherichia coli from Edible Insect Species: Detection of Shiga Toxin-Producing Isolate. Foods 2021; 10:foods10112552. [PMID: 34828833 PMCID: PMC8618678 DOI: 10.3390/foods10112552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Insects as novel foods are gaining popularity in Europe. Regulation (EU) 2015/2283 laid the framework for the application process to market food insects in member states, but potential hazards are still being evaluated. The aim of this study was to investigate samples of edible insect species for the presence of antimicrobial-resistant and Shiga toxin-producing Escherichia coli (STEC). Twenty-one E. coli isolates, recovered from samples of five different edible insect species, were subjected to antimicrobial susceptibility testing, PCR-based phylotyping, and macrorestriction analysis. The presence of genes associated with antimicrobial resistance or virulence, including stx1, stx2, and eae, was investigated by PCR. All isolates were subjected to genome sequencing, multilocus sequence typing, and serotype prediction. The isolates belonged either to phylogenetic group A, comprising mostly commensal E. coli, or group B1. One O178:H7 isolate, recovered from a Zophobas atratus sample, was identified as a STEC. A single isolate was resistant to tetracyclines and carried the tet(B) gene. Overall, this study shows that STEC can be present in edible insects, representing a potential health hazard. In contrast, the low resistance rate among the isolates indicates a low risk for the transmission of antimicrobial-resistant E. coli to consumers.
Collapse
|
5
|
Victoria VM, Rocío C, Silvina E, Inés EA, Lía PN. Biofilm formation by LEE-negative Shiga Toxin-Producing Escherichia coli strains. Microb Pathog 2021; 157:105006. [PMID: 34044049 DOI: 10.1016/j.micpath.2021.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) include several serotypes isolated from cases of hemorrhagic colitis and, hemolytic uremic syndrome. Although O157:H7 is the most predominant STEC serotype, more than 100 non-O157 serogroups cause diseases in humans. Some STEC carry a Locus of Enterocyte Effacement (LEE-positive); however, STEC that do not carry LEE (LEE-negative) have also been associated with illness, mainly those harbouring the Locus of Adhesion and Autoaggregation (LAA). LAA carry some genes such as hes, iha, tpsA, and agn43, related with pathogenicity. One of them is the ability to form biofilms on different environments, which can contaminate food and generate infections while protecting themselves against adverse conditions. Considering that LAA could be responsible for some adherence mechanisms, the aims of this study were to compare different serogroup of LEE-negative STEC strains in their ability to form biofilms and to evaluate the participation of some genes encoding in LAA. A total of 348 LEE-negative STEC strains was analyzed. The presence of hes, iha, tpsA and agn43 were determined by monoplex PCR. From them, 48 STEC strains belonging to serogroups O113, O130, O171, O174 and, O178 were assayed for their ability to form biofilm. The most prevalent genes detected were agn43 (72.1%) and tpsA (69.5%). The iha and hes genes were present in 63.7% and 54% of the strains, respectively. Although all STEC strains were able to form biofilm, it was found a high variability between them. The relation between the biofilm formation and the presence of each gene was not statistically significant, suggesting that biofilm formation is independent of the presence of those genes. Highlighting that there is no treatment for HUS, it is once again notable that prevention measures and control strategies to prevent biofilm formation are important factors in reducing STEC transmission.
Collapse
Affiliation(s)
- Vélez María Victoria
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina
| | - Colello Rocío
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina.
| | - Etcheverría Silvina
- Cátedra Estadística, Econometría y Modelización. Tandil, Facultad de Ciencias Económicas, UNCPBA. (7000) Tandil, Buenos Aires, Argentina
| | - Etcheverría Analía Inés
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina
| | - Padola Nora Lía
- Laboratorio de Inmunoquímica y Biotecnología. Centro de Investigación Veterinaria Tandil CONICET- CICPBA, Facultad de Ciencias Veterinarias, UNCPBA CIVETAN. (7000) Tandil, Buenos Aires, Argentina
| |
Collapse
|
6
|
Carlino MJ, Kralicek SE, Santiago SA, Sitaraman LM, Harrington AT, Hecht GA. Quantitative analysis and virulence phenotypes of atypical enteropathogenic Escherichia coli (EPEC) acquired from diarrheal stool samples from a Midwest US hospital. Gut Microbes 2020; 12:1-21. [PMID: 33131419 PMCID: PMC7644165 DOI: 10.1080/19490976.2020.1824562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Infectious diarrhea causes approximately 179 million illnesses annually in the US. Multiplex PCR assays for enteric pathogens detect enteropathogenic Escherichia coli (EPEC) in 12-29% of diarrheal stool samples from all age groups in developed nations. The aim of this study was to isolate and characterize EPEC from diarrhea samples identified as EPEC positive by BioFire Gastrointestinal Panel (GIP). EPEC is the second most common GIP-detected pathogen, equally present in sole and mixed infections peaking during summer months. EPEC bacterial load is higher in samples with additional pathogens. EPEC-GIP-positive stool samples were cultured on MacConkey II agar and analyzed by colony PCR for eaeA and bfpA to identify and classify EPEC isolates as typical (tEPEC) or atypical (aEPEC). EPEC were not recovered from the majority of stool samples with only 61 isolates obtained from 277 samples; most were aEPEC from adults. bfpA-mRNA was severely diminished in 3 of 4 bfpA-positive isolates. HeLa and SKCO-15 epithelial cells were infected with EPEC isolates and virulence-associated phenotypes, including adherence pattern, attachment level, pedestal formation, and tight junction disruption, were assessed. All aEPEC adherence patterns were represented with diffuse adherence predominating. Attachment rates of isolates adhering with defined adherence patterns were higher than tEPEC lacking bfpA (ΔbfpA). The majority of isolates formpedestals. All but one isolate initially increases but ultimately decreases transepithelial electrical resistance of SKCO-15 monolayers, similar to ΔbfpA. Most isolates severely disrupt occludin; ZO-1 disruption is variable. Most aEPEC isolates induce more robust virulence-phenotypes in vitro than ΔbfpA, but less than tEPEC-E2348/69.
Collapse
Affiliation(s)
- MJ Carlino
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - SE Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - SA Santiago
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - LM Sitaraman
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - AT Harrington
- Department of Pathology and Laboratory Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Gail A. Hecht
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA,Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA,Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA,Department of Medical Service, Edward Hines Jr. VA Hospital, Hines, IL,CONTACT Gail A. Hecht Department of Medicine, Division of Gastroenterology, Loyola University Chicago, IL, USA
| |
Collapse
|
7
|
Lopes HP, Costa GA, Pinto AC, Machado LS, Cunha NC, Nascimento ER, Pereira VL, Abreu DL. Detection of the mcr-1 gene in Enteropathogenic Escherichia coli (EPEC) and Shigatoxigenic E. coli (STEC) strains isolated from broilers. PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-5983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Enteropathogenic Escherichia coli (EPEC) and Shigatoxigenic E. coli (STEC) strains are among the major pathotypes found in poultry and their products, which are capable of causing human enteric infections. Colistin has been claimed the drug of choice against diseases caused by multidrug-resistant Gram-negative bacteria (MDRGN) in humans. The mcr-1 gene was the first plasmidial gene that has been described to be responsible for colistin resistance and has also been detected in birds and poultry products. Our study aimed to detect the mcr-1 gene in enteropathogenic strains of E. coli in order to evaluate the resistance to colistin in broilers. The material was obtained from 240 cloacal samples and 60 broiler carcasses. The strains were isolated by the conventional bacteriological method and by the virulence genes, which characterize the enteropathogenic strains and resistance, and the samples were detected by polymerase chain reaction (PCR). Of the 213 isolated strains of E. coli, 57 (26.76%) were characterized as atypical EPEC and 35 (16.43%) as STEC. The mcr-1 gene was found in 3.5% (2/57) of the EPEC strains and 5.7% (2/35) of the STEC strains. In this study, it was possible to confirm that the mcr-1 resistance gene is already circulating in the broiler flocks studied and may be associated with the pathogenic strains.
Collapse
|
8
|
Cerutti MF, Vieira TR, Zenato KS, Werlang GO, Pissetti C, Cardoso M. Escherichia coli in Chicken Carcasses in Southern Brazil: Absence of Shigatoxigenic (STEC) and Isolation of Atypical Enteropathogenic (aEPEC). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- MF Cerutti
- Universidade Federal do Rio Grande do Sul, Brazil
| | - TR Vieira
- Universidade Federal do Rio Grande do Sul, Brazil
| | - KS Zenato
- Universidade Federal do Rio Grande do Sul, Brazil
| | - GO Werlang
- Universidade Federal do Rio Grande do Sul, Brazil
| | - C Pissetti
- Universidade Federal do Rio Grande do Sul, Brazil
| | - M Cardoso
- Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Identification and detection of iha subtypes in LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains isolated from humans, cattle and food. Heliyon 2019; 5:e03015. [PMID: 31879713 PMCID: PMC6920203 DOI: 10.1016/j.heliyon.2019.e03015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 01/30/2023] Open
Abstract
LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains are important cause of infection in humans and they should be included in the public health surveillance systems. Some isolates have been associated with haemolytic uremic syndrome (HUS) but the mechanisms of pathogenicity are is a field continuos broadening of knowledge. The IrgA homologue adhesin (Iha), encoded by iha, is an adherence-conferring protein and also a siderophore receptor distributed among LEE-negative STEC strains. This study reports the presence of different subtypes of iha in LEE-negative STEC strains. We used genomic analyses to design PCR assays for detecting each of the different iha subtypes and also, all the subtypes simultaneously. LEE-negative STEC strains were designed and different localizations of this gene in STEC subgroups were examinated. Genomic analysis detected iha in a high percentage of LEE-negative STEC strains. These strains generally carried iha sequences similar to those harbored by the Locus of Adhesion and Autoaggregation (LAA) or by the plasmid pO113. Besides, almost half of the strains carried both subtypes. Similar results were observed by PCR, detecting iha LAA in 87% of the strains (117/135) and iha pO113 in 32% of strains (43/135). Thus, we designed PCR assays that allow rapid detection of iha subtypes harbored by LEE-negative strains. These results highlight the need to investigate the individual and orchestrated role of virulence genes that determine the STEC capacity of causing serious disease, which would allow for identification of target candidates to develop therapies against HUS.
Collapse
|
10
|
Son SH, Seo KW, Kim YB, Jeon HY, Noh EB, Lee YJ. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Edible Offal in Korea. J Food Prot 2019; 82:1183-1190. [PMID: 31233359 DOI: 10.4315/0362-028x.jfp-18-458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIGHLIGHTS Edible offal is significantly contaminated by antimicrobial-resistant Escherichia coli. E. coli from edible offal is harboring various antimicrobial resistance and virulence genes. Improvements in hygienic conditions of edible offal production is required.
Collapse
Affiliation(s)
- Se Hyun Son
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: https://orcid.org/0000-0002-4754-0931 [Y.B.K.]; https://orcid.org/0000-0003-1903-1133 [H.Y.J.])
| | - Kwang Won Seo
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: https://orcid.org/0000-0002-4754-0931 [Y.B.K.]; https://orcid.org/0000-0003-1903-1133 [H.Y.J.])
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: https://orcid.org/0000-0002-4754-0931 [Y.B.K.]; https://orcid.org/0000-0003-1903-1133 [H.Y.J.])
| | - Hye Young Jeon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: https://orcid.org/0000-0002-4754-0931 [Y.B.K.]; https://orcid.org/0000-0003-1903-1133 [H.Y.J.])
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: https://orcid.org/0000-0002-4754-0931 [Y.B.K.]; https://orcid.org/0000-0003-1903-1133 [H.Y.J.])
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea (ORCID: https://orcid.org/0000-0002-4754-0931 [Y.B.K.]; https://orcid.org/0000-0003-1903-1133 [H.Y.J.])
| |
Collapse
|
11
|
Efectos del medio de cultivo y de la metodología aplicada sobre la formación de biopelículas de 2 cepas de Escherichia coli diarreagénicas. Rev Argent Microbiol 2019; 51:208-213. [DOI: 10.1016/j.ram.2018.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/27/2018] [Accepted: 04/08/2018] [Indexed: 11/20/2022] Open
|
12
|
Zhang S, Yang G, Huang Y, Zhang J, Cui L, Wu Q. Prevalence and Characterization of Atypical Enteropathogenic Escherichia coli Isolated from Retail Foods in China. J Food Prot 2018; 81:1761-1767. [PMID: 30277802 DOI: 10.4315/0362-028x.jfp-18-188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is an emerging pathogen that has been implicated in outbreaks of diarrhea worldwide. The objective of this study was to investigate the occurrence of aEPEC in retail foods at markets in the People's Republic of China and to characterize the isolates for virulence genes, intimin gene ( eae) subtypes, multilocus sequence types (STs), and antimicrobial susceptibility. From May 2014 to April 2015, 1,200 food samples were collected from retail markets in China, and 41 aEPEC isolates were detected in 2.75% (33 of 1,200) of the food samples. The virulence genes tir, katP, etpD, efa/lifA, ent, nleB, and nleE were commonly detected in these isolates. Nine eae subtypes were detected in the isolates, among which θ (23 isolates) and β1 (6 isolates) were the most prevalent. The 41 isolates were divided into 27 STs by multilocus sequence typing. ST752 and ST10 were the most prevalent. Antibiotic susceptibility testing revealed high resistance among isolates to streptomycin (87.80%), cephalothin (73.16%), ampicillin (51.22%), tetracycline (63.42%), trimethoprim-sulfamethoxazole (43.90%), and kanamycin (43.90%). Thirty isolates (73.17%) were resistant to at least three antibiotics, and 20 (53.66 %) were resistant to five or more antibiotics. Our results suggest that retail foods in markets are important sources of aEPEC. The presence of virulent and multidrug-resistant aEPEC in retail foods poses a potential threat to consumers. Surveillance of aEPEC contamination and prudent use of antibiotics is strongly recommended in China.
Collapse
Affiliation(s)
- Shuhong Zhang
- 1 College of Natural Resources and Environment, South China Agricultural University, Wushan Road No. 483, Guangzhou 510642, People's Republic of China.,2 Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Middle Road No. 100, Yuexiu District, Guangzhou 510070, People's Republic of China
| | - Guangzhu Yang
- 2 Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Middle Road No. 100, Yuexiu District, Guangzhou 510070, People's Republic of China
| | - Yuanbin Huang
- 2 Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Middle Road No. 100, Yuexiu District, Guangzhou 510070, People's Republic of China
| | - Jumei Zhang
- 2 Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Middle Road No. 100, Yuexiu District, Guangzhou 510070, People's Republic of China
| | - Lihua Cui
- 1 College of Natural Resources and Environment, South China Agricultural University, Wushan Road No. 483, Guangzhou 510642, People's Republic of China
| | - Qingping Wu
- 2 Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Xianlie Middle Road No. 100, Yuexiu District, Guangzhou 510070, People's Republic of China
| |
Collapse
|
13
|
First report of the distribution of Locus of Adhesion and Autoaggregation (LAA) pathogenicity island in LEE-negative Shiga toxin-producing Escherichia coli isolates from Argentina. Microb Pathog 2018; 123:259-263. [DOI: 10.1016/j.micpath.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
|
14
|
Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment. Microorganisms 2018; 6:microorganisms6040099. [PMID: 30274159 PMCID: PMC6313391 DOI: 10.3390/microorganisms6040099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the presence of class 1 integrons in a collection of Shiga toxin-producing Escherichia coli (STEC) from different origins and to characterize pheno- and genotypically the antimicrobial resistance associated to them. A collection of 649 isolates were screened for the class 1 integrase gene (intI1) by Polymerase chain reaction The variable region of class 1 integrons was amplified and sequenced. Positive strains were evaluated for the presence of antimicrobial resistance genes with microarray and for antimicrobial susceptibility by the disk diffusion method. Seven out of 649 STEC strains some to serogroups, O26, O103 and O130 isolated from cattle, chicken burger, farm environment and pigs were identified as positive for intl1. Different arrangements of gene cassettes were detected in the variable region of class 1 integron: dfrA16, aadA23 and dfrA1-aadA1. In almost all strains, phenotypic resistance to streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and sulfisoxazole was observed. Microarray analyses showed that most of the isolates carried four or more antimicrobial resistance markers and STEC strains were categorized as Multridrug-resistant. Although antimicrobials are not usually used in the treatment of STEC infections, the presence of Multridrug-resistant in isolates collected from farm and food represents a risk for animal and human health.
Collapse
|
15
|
Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina. Int J Food Microbiol 2017; 261:57-61. [DOI: 10.1016/j.ijfoodmicro.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022]
|
16
|
HIZLISOY H, AL S, ERTAŞ ONMAZ N, YILDIRIM Y, GÖNÜLALAN Z, GÜMÜŞSOY KS. Antimicrobial resistance profiles and virulence factors of Escherichia coliO157 collected from a poultry processing plant*. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 2017. [DOI: 10.3906/vet-1602-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Alonso MZ, Krüger A, Sanz ME, Padola NL, Lucchesi PM. Serotypes, virulence profiles and stx subtypes of Shigatoxigenic Escherichia coli isolated from chicken derived products. Rev Argent Microbiol 2016; 48:325-328. [DOI: 10.1016/j.ram.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/22/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022] Open
|
18
|
Alonso MZ, Sanz ME, Irino K, Krüger A, Lucchesi PMA, Padola NL. Isolation of atypical enteropathogenic Escherichia coli from chicken and chicken-derived products. Br Poult Sci 2016; 57:161-4. [PMID: 26810335 DOI: 10.1080/00071668.2015.1135502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Atypical enteropathogenic Escherichia coli (EPEC) strains from chicken and chicken-derived products were isolated and characterised. The strains presented a wide variety of serotypes, some have been reported in other animal species (O2:H40, O5:H40) and in children with diarrhoea (O8:H-). Most of the strains carried intimin β. The results indicate that chicken and chicken products are important sources of atypical EPEC strains that could be associated with human disease, and highlight the need to improve hygiene practices in chicken slaughtering and meat handling.
Collapse
Affiliation(s)
- M Z Alonso
- a Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias , UNCPBA , Tandil , Argentina
| | | | - K Irino
- c Department of Bacteriology , Instituto Adolfo Lutz , Sao Paulo , Brazil
| | - A Krüger
- a Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias , UNCPBA , Tandil , Argentina
| | - P M A Lucchesi
- a Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias , UNCPBA , Tandil , Argentina
| | - N L Padola
- a Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Departamento de Sanidad Animal y Medicina Preventiva, Facultad de Ciencias Veterinarias , UNCPBA , Tandil , Argentina
| |
Collapse
|
19
|
Shiga toxin and beta-lactamases genes in Escherichia coli phylotypes isolated from carcasses of broiler chickens slaughtered in Iran. Int J Food Microbiol 2014; 177:16-20. [DOI: 10.1016/j.ijfoodmicro.2014.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 02/02/2014] [Accepted: 02/06/2014] [Indexed: 11/20/2022]
|
20
|
Ahmed AM, Shimamoto T. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157:H7 and Shigella spp. from meat and dairy products in Egypt. Int J Food Microbiol 2013; 168-169:57-62. [PMID: 24239976 DOI: 10.1016/j.ijfoodmicro.2013.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
Foodborne pathogens are a major threat to food safety, especially in developing countries where hygiene and sanitation facilities are often poor. Salmonella enterica, Escherichia coli O157:H7 and Shigella spp. are among the major causes of outbreaks of foodborne diseases. This large-scale study investigated the prevalence of these foodborne pathogens in meat (beef and chicken) and dairy products collected from street vendors, butchers, retail markets and slaughterhouses in Egypt. A total of 1600 food samples (800 meat products and 800 dairy products) were analyzed using culture and PCR based methods. S. enterica, E. coli O157:H7 and Shigella spp. were detected in 69 (4.3%), 54 (3.4%) and 27 (1.7%) samples respectively. S. enterica serovar Typhimurium, S. enterica serovar Enteritidis, S. enterica serovar Infantis and non-typable serovars were detected in 28 (1.8%), 22 (1.4%), 16 (1.0%) and 3 (0.1%) samples respectively. All E. coli O157:H7 isolates were positive for stx1 and/or stx2 virulence toxin genes. Shigella flexneri, Shigella sonnei and Shigella dysenteriae were detected in 18 (1.2%), 7 (0.4%) and 2 (0.1%) samples respectively. The incidences of S. enterica and Shigella spp. were higher in meat products (53; 6.6% and 16; 2.0%, respectively) than in dairy products (16; 2.0% and 11; 1.4%, respectively), while, E. coli O157:H7 was higher in dairy products (29; 3.6%) than in meat products (25; 3.1%). The incidence of foodborne pathogens in meat and dairy products was determined in a large-scale survey in Africa.
Collapse
Affiliation(s)
- Ashraf M Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | | |
Collapse
|
21
|
de Oliveira MMM, Brugnera DF, do Nascimento JA, Piccoli RH. Control of planktonic and sessile bacterial cells by essential oils. FOOD AND BIOPRODUCTS PROCESSING 2012. [DOI: 10.1016/j.fbp.2012.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Characterization of non-O157 shiga toxin-producing Escherichia coli isolates from healthy fat-tailed sheep in southeastern of Iran. Trop Anim Health Prod 2012; 45:641-8. [PMID: 23015355 DOI: 10.1007/s11250-012-0271-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Abstract
The objectives of this study were to determine the presence and prevalence of non-O157 shiga toxin-producing Escherichia coli (STEC) isolates from faeces of healthy fat-tailed sheep and detection of phylogenetic background and antibiotic resistance profile of isolates. One hundred ninety-two E. coli isolates were recovered from obtained rectal swabs and were confirmed by biochemical tests. Antibiotic resistance profiles of isolates were detected and phylogenetic background of isolates was determined according to the presence of the chuA, yjaA and TspE4.C2 genetic markers. The isolates were examined to determine stx (1), stx (2) and eae genes. Non-O157 STEC isolates were identified by using O157 specific antiserum. Forty-three isolates (22.40 %) were positive for one of the stx (1), stx (2) and eae genes, whereas 10.42 % were positive for stx (1), 19.38 % for eae and 2.60 % for stx (2) gene. None of the positive isolates belonged to O157 serogroup. Twenty isolates possessed stx ( 1 ) were distributed in A (six isolates), B1 (13) and D (one) phylogroups, whereas stx (2) positive isolates fell into A (three isolates) and B1 (two) phylogenetic groups. Eighteen isolates contained eae gene belonged to A (five isolates), B1 (seven) and D (six) phylogroups. The maximum and minimum resistance rates were recorded against to penicillin and co-trimoxazole respectively. The positive isolates for stx (1), stx (2) and eae genes showed several antibiotic resistance patterns, whereas belonged to A, B1 and D phylogroups. In conclusion, faeces of healthy sheep could be considered as the important sources of non-O157 STEC and also multidrug-resistant E. coli isolates.
Collapse
|