1
|
Xue X, Zhang Y. Review of the detection of pathogenic Escherichia coli based-microchip technology. ANAL SCI 2025; 41:225-236. [PMID: 39654011 DOI: 10.1007/s44211-024-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/12/2024] [Indexed: 02/18/2025]
Abstract
Escherichia coli (E. coli) is a pathogen that has generated global concern due to the public health challenges it has created. Therefore, the rapid and accurate detection of E. coli is important to public health safety. Microchips have become a popular analytical technique for detecting E. coli due to their automation, high analytical efficiency, and low analyte consumption. Therefore, this paper highlights multiple microchip-based strategies for the detection of E. coli, reviews their limitations, and provides strategies and future perspectives for analyzing E. coli..
Collapse
Affiliation(s)
- Xudong Xue
- Xi'an Innovation College of Yan'an University, Xi'an, 710100, China
| | - Yan Zhang
- Science of Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
2
|
Zhang J, Ren L, Zhang L, Gong Y, Xu T, Wang X, Guo C, Zhai L, Yu X, Li Y, Zhu P, Chen R, Jing X, Jing G, Zhou S, Xu M, Wang C, Niu C, Ge Y, Ma B, Shang G, Cui Y, Yao S, Xu J. Single-cell rapid identification, in situ viability and vitality profiling, and genome-based source-tracking for probiotics products. IMETA 2023; 2:e117. [PMID: 38867931 PMCID: PMC10989769 DOI: 10.1002/imt2.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/07/2023] [Indexed: 06/14/2024]
Abstract
Rapid expansion of the probiotics industry demands fast, sensitive, comprehensive, and low-cost strategies for quality assessment. Here, we introduce a culture-free, one-cell-resolution, phenome-genome-combined strategy called Single-Cell Identification, Viability and Vitality tests, and Source-tracking (SCIVVS). For each cell directly extracted from the product, the fingerprint region of D2O-probed single-cell Raman spectrum (SCRS) enables species-level identification with 93% accuracy, based on a reference SCRS database from 21 statutory probiotic species, whereas the C-D band accurately quantifies viability, metabolic vitality plus their intercellular heterogeneity. For source-tracking, single-cell Raman-activated Cell Sorting and Sequencing can proceed, producing indexed, precisely one-cell-based genome assemblies that can reach ~99.40% genome-wide coverage. Finally, we validated an integrated SCIVVS workflow with automated SCRS acquisition where the whole process except sequencing takes just 5 h. As it is >20-fold faster, >10-time cheaper, vitality-revealing, heterogeneity-resolving, and automation-prone, SCIVVS is a new technological and data framework for quality assessment of live-cell products.
Collapse
Affiliation(s)
- Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Lihui Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- College of Information Science & Engineering Ocean University of China Qingdao Shandong China
| | - Lei Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- Qingdao Branch of China United Network Communications Co., Ltd. Qingdao Shandong China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaohang Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Cheng Guo
- Eastsea Pharma Co., Ltd. Qingdao Shandong China
| | - Lei Zhai
- China National Research Institute of Food and Fermentation Industries Co., Ltd., China Center of Industrial Culture Collection Beijing China
| | - Xuejian Yu
- China National Research Institute of Food and Fermentation Industries Co., Ltd., China Center of Industrial Culture Collection Beijing China
| | - Ying Li
- Qingdao Single-Cell Biotech. Co., Ltd. Qingdao Shandong China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Qingdao Single-Cell Biotech. Co., Ltd. Qingdao Shandong China
| | - Rongze Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Gongchao Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | - Shiqi Zhou
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
| | - Mingyue Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
| | | | - Yuanyuan Ge
- China National Research Institute of Food and Fermentation Industries Co., Ltd., China Center of Industrial Culture Collection Beijing China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| | | | - Yunlong Cui
- Eastsea Pharma Co., Ltd. Qingdao Shandong China
| | - Su Yao
- China National Research Institute of Food and Fermentation Industries Co., Ltd., China Center of Industrial Culture Collection Beijing China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao Shandong China
- Shandong Energy Institute Qingdao Shandong China
- Qingdao New Energy Shandong Laboratory Qingdao Shandong China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
3
|
Wiatrowski M, Rosiak E, Czarniecka-Skubina E. Surface Hygiene Evaluation Method in Food Trucks as an Important Factor in the Assessment of Microbiological Risks in Mobile Gastronomy. Foods 2023; 12:772. [PMID: 36832855 PMCID: PMC9955632 DOI: 10.3390/foods12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Street food outlets are characterised by poor microbiological quality of the food and poor hygiene practices that pose a risk to consumer health. The aim of the study was to evaluate the hygiene of surfaces in food trucks (FT) using the reference method together with alternatives such as PetrifilmTM and the bioluminescence method. TVC, S. aureus, Enterobacteriaceae, E. coli, L. monocytogenes, and Salmonella spp. were assessed. The material for the study consisted of swabs and prints taken from five surfaces (refrigeration, knife, cutting board, serving board, and working board) in 20 food trucks in Poland. In 13 food trucks, the visual assessment of hygiene was very good or good, but in 6 FTs, TVC was found to exceed log 3 CFU/100 cm2 on various surfaces. The assessment of surface hygiene using various methods in the food trucks did not demonstrate the substitutability of culture methods. PetrifilmTM tests were shown to be a convenient and reliable tool for the monitoring of mobile catering hygiene. No correlation was found between the subjective visual method and the measurement of adenosine 5-triphosphate. In order to reduce the risk of food infections caused by bacteria in food trucks, it is important to introduce detailed requirements for the hygiene practices used in food trucks, including techniques for monitoring the cleanliness of surfaces coming into contact with food, in particular cutting boards and work surfaces. Efforts should be focused on introducing mandatory, certified training for food truck personnel in the field of microbiological hazards, appropriate methods of hygienisation, and hygiene monitoring.
Collapse
Affiliation(s)
| | | | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska Str., 02-787 Warsaw, Poland
| |
Collapse
|
4
|
Guo J, Wang W, Zhao H, Luo Y, Wan M, Li Y. A new PMA-qPCR method for rapid and accurate detection of viable bacteria and spores of marine-derived Bacillus velezensis B-9987. J Microbiol Methods 2022; 199:106537. [DOI: 10.1016/j.mimet.2022.106537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
|
5
|
Zhang Y, Hu X, Wang Q. Review of microchip analytical methods for the determination of pathogenic Escherichia coli. Talanta 2021; 232:122410. [PMID: 34074400 DOI: 10.1016/j.talanta.2021.122410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Bacterial infections remain the principal cause of mortality worldwide, making the detection of pathogenic bacteria highly important, especially Escherichia coli (E. coli). Current E. coli detection methods are labour-intensive, time-consuming, or require expensive instrumentation, making it critical to develop new strategies that are sensitive and specific. Microchips are an automated analytical technique used to analyse food based on their separation efficiency and low analyte consumption, which make them the preferred method to detect pathogenic bacteria. This review presents an overview of microchip-based analytical methods for analysing E. coli, which were published in recent years. Specifically, this review focuses on current research based on microchips for the detection of E. coli and reviews the limitations of microchip-based methods and future perspectives for the analysis of pathogenic bacteria.
Collapse
Affiliation(s)
- Yan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
6
|
Tut G, Magan N, Brain P, Xu X. Molecular Assay Development to Monitor the Kinetics of Viable Populations of Two Biocontrol Agents, Bacillus subtilis QST 713 and Gliocladium catenulatum J1446, in the Phyllosphere of Lettuce Leaves. BIOLOGY 2021; 10:biology10030224. [PMID: 33804029 PMCID: PMC8001495 DOI: 10.3390/biology10030224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary There is a need to be able to track the viable populations of biocontrol agents when applied on the foliar surfaces of plants. We have developed a molecular-based method for the quantification of viable cells of two commercial biocontrol agents—a bacterium (Bacillus subtilis) and a fungus (Gliocladium catenulatum). The method has been tested on the leaf surfaces of lettuce plants to examine the changes in viable population over 10–12 days for the first time. Abstract Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium catenulatum, in the phyllosphere of crop plants are available. The objective of this study was to develop a method to quantify viable populations of these two BCAs in the crop phyllosphere. A molecular tool based on propidium monoazide (PMA) (PMAxx™-qPCR) capable of quantifying viable populations of these two BCAs was developed. Samples were treated with PMAxx™ (12.5–100 μM), followed by 15 min incubation, exposure to a 800 W halogen light for 30 min, DNA extraction, and quantification using qPCR. This provided a platform for using the PMAxx™-qPCR technique for both BCAs to differentiate viable from dead cells. The maximum number of dead cells blocked, based on the DNA, was 3.44 log10 for B. subtilis and 5.75 log10 for G. catenulatum. Validation studies showed that this allowed accurate quantification of viable cells. This method provided effective quantification of the temporal changes in viable populations of the BCAs in commercial formulations on lettuce leaves in polytunnel and glasshouse production systems.
Collapse
Affiliation(s)
- Gurkan Tut
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK
- Correspondence:
| | - Philip Brain
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
| | - Xiangming Xu
- NIAB East Malling Research, West Malling, Kent ME19 6BJ, UK; (G.T.); (P.B.); (X.X.)
| |
Collapse
|
7
|
A. AL-Aejr H, S. Al-Sowa N, Abd El-Raz M. Heavy Microbial Load in the Work Environment, Utensils and Surfaces of Domestic Kitchens. JOURNAL OF BIOLOGICAL SCIENCES 2021; 21:38-44. [DOI: 10.3923/jbs.2021.38.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Application of Recombinase Polymerase Amplification with Lateral Flow for a Naked-Eye Detection of Listeria monocytogenes on Food Processing Surfaces. Foods 2020; 9:foods9091249. [PMID: 32906705 PMCID: PMC7555525 DOI: 10.3390/foods9091249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
The continuous contamination of foods with L. monocytogenes, highlights the need for additional controls in the food industry. The verification of food processing plants is key to avoid cross-contaminations, and to assure the safety of the food products. In this study, a new methodology for the detection of L. monocytogenes on food contact surfaces was developed and evaluated. It combines Recombinase Polymerase Amplification (RPA) with the lateral flow (LF) naked-eye detection. Different approaches for the recovery of the bacteria from the surface, the enrichment step and downstream analysis by RPA-LF were tested and optimized. The results were compared with a standard culture-based technique and qPCR analysis. Sampling procedure with sponges was more efficient for the recovery of the bacteria than a regular swab. A 24 h enrichment in ONE broth was needed for the most sensitive detection of the pathogen. By RPA-LF, it was possible to detect 1.1 pg/µL of pure L. monocytogenes DNA, and the complete methodology reached a LoD50 of 4.2 CFU/cm2 and LoD95 of 18.2 CFU/cm2. These results are comparable with the culture-based methodology and qPCR. The developed approach allows for a next-day detection without complex equipment and a naked-eye visualization of the results.
Collapse
|
9
|
Di Ciccio P, Rubiola S, Grassi MA, Civera T, Abbate F, Chiesa F. Fate of Listeria monocytogenes in the Presence of Resident Cheese Microbiota on Common Packaging Materials. Front Microbiol 2020; 11:830. [PMID: 32499762 PMCID: PMC7243358 DOI: 10.3389/fmicb.2020.00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 01/03/2023] Open
Abstract
Literature data regarding the survival of microorganisms on materials used for food package purposes are scarce. The aim of the current study is to assess the survival of Listeria monocytogenes on different packaging materials for dairy products during extended storage at different temperatures. Three packaging materials (5 × 5 cm) were contaminated with a cocktail of five strains of Listeria monocytogenes suspended in a cheese homogenate, including the cheese's native microbial population. Contaminated samples were incubated at 37°, 12°, and 4°C and periodically analyzed up to 56 days. The evolution of the total viable count and pathogen population was evaluated. At 37°C, the results showed that Listeria monocytogenes was no longer detected on polyethylene-coated nylon (B) by day 4 and on polyethylene-coated parchment (A) and greaseproof paper (C) by day 7. Interestingly, the initial cell population (ranging between 2.5 and 2.7 log CFU/cm2) of Listeria monocytogenes increased to 3 log CFU/cm2 within 4 days of storage at 12°C on A and C. During storage, the number remained fairly constant at 12°C and 4°C on two materials (A-C) and decreased slowly on the third one (B). This study shows that survival of Listeria monocytogenes on packaging materials for dairy products will be higher when stored at 4 or 12°C compared to 37°C. The survival of Listeria monocytogenes on the packaging materials raises concerns of cross-contamination during food handling and preparation at catering and retail premises and within the home, highlighting the importance of treating the packaging materials as a potential source of cross-contamination. These initial findings may aid in quantifying risks associated with contamination of food packaging materials.
Collapse
Affiliation(s)
| | - Selene Rubiola
- Department of Veterinary Science, University of Turin, Turin, Italy
| | | | - Tiziana Civera
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario della Annunziata, Messina, Italy
| | - Francesco Chiesa
- Department of Veterinary Science, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Miotto M, Barretta C, Ossai SO, da Silva HS, Kist A, Vieira CRW, Parveen S. Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood. Int J Food Microbiol 2020; 318:108467. [PMID: 31835094 DOI: 10.1016/j.ijfoodmicro.2019.108467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/13/2019] [Accepted: 11/30/2019] [Indexed: 11/15/2022]
Abstract
The present study compared different concentrations of propidium monoazide (PMA), time of exposure to light and different light intensities to determine the optimal conditions for the quantification of viable Escherichia coli in cell suspension and in food matrix. The influence of cell density and the effectiveness of PMA in viable but non-culturable (VBNC) E. coli cells were evaluated and also applied in food matrix. For that purpose, different concentrations of PMA (20 μM, 40 μM, 50 μM, 60 μM and 80 μM) under different times of exposure (5 min, 10 min, 15 min, 20 min and 30 min) to lights of different intensities (500 W and 650 W) were evaluated. After determining the optimal conditions, the PMA-qPCR methods were applied to different compositions of live and heat-killed E. coli suspensions (v:v; 0:1; 1:0; 1:1) in concentrations ranging from 3 Log to 7 Log CFU/mL. The same dilutions were prepared with E. coli in VBNC state and applied in food matrix. The results obtained from qPCR, PMA-qPCR and plate counts were compared. The results suggested that a PMA treatment of 50 μM PMA for 15 min under 650 W light intensity was optimal under our conditions. For E. coli cell suspensions, the amplification of heat-killed cells was inhibited greatly by PMA when concentrations were ≤ 5 Log CFU/mL. For the samples of oyster inoculated with heat-killed cells, E. coli was not detected by PMA-qPCR in concentrations ≤4 Log CFU/g. Regarding the results with VBNC state, we considered the PMA-qPCR method to be applicable for enumerating E. coli VBNC cells in oyster samples. Based on our findings, we further recommend the use of PMA-qPCR with the aim of reducing the amplification of dead cells for improving its performance, since false-positives could still occur depending on the level of E. coli in the sample. The application of the PMA-qPCR for quantification of bacteria, compared to the use of culture-dependent methods, is quite promising. However, further studies are recommended, especially using different food matrices.
Collapse
Affiliation(s)
- Marilia Miotto
- Department of Food Science and Technology, Federal University of Santa Catarina, 1346 Admar Gonzaga, 88034-001 Florianopolis, Santa Catarina, Brazil.
| | - Clarissa Barretta
- Department of Food Science and Technology, Federal University of Santa Catarina, 1346 Admar Gonzaga, 88034-001 Florianopolis, Santa Catarina, Brazil
| | - Sylvia O Ossai
- Food Science and Technology Program, University of Maryland Eastern Shore, 2116 Backbone Road, 21853 Princess Anne, MD, United States
| | - Helen Silvestre da Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, 1346 Admar Gonzaga, 88034-001 Florianopolis, Santa Catarina, Brazil
| | - Airton Kist
- Laboratory of Computational and Applied Statistics, Department of Mathematics and Statistics, State University of Ponta Grossa, 4748 Gen. Carlos Cavalcanti, 84030-900 Ponta Grossa, Parana, Brazil
| | - Cleide Rosana Werneck Vieira
- Department of Food Science and Technology, Federal University of Santa Catarina, 1346 Admar Gonzaga, 88034-001 Florianopolis, Santa Catarina, Brazil
| | - Salina Parveen
- Food Science and Technology Program, University of Maryland Eastern Shore, 2116 Backbone Road, 21853 Princess Anne, MD, United States
| |
Collapse
|
11
|
Lee WN, Yoo HJ, Nguyen KH, Baek C, Min J. Semi-automatic instrumentation for nucleic acid extraction and purification to quantify pathogens on surfaces. Analyst 2019; 144:6586-6594. [DOI: 10.1039/c9an00896a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A semi-automated detection system compatible with PCR that can detect infectious pathogens on wide surfaces in a short time.
Collapse
Affiliation(s)
- Won-Nyoung Lee
- School of Integrative Engineering
- Chung-Ang University
- Seoul
- South Korea
| | - Hyun Jin Yoo
- School of Integrative Engineering
- Chung-Ang University
- Seoul
- South Korea
| | - Kim Huyen Nguyen
- School of Integrative Engineering
- Chung-Ang University
- Seoul
- South Korea
| | - Changyoon Baek
- School of Integrative Engineering
- Chung-Ang University
- Seoul
- South Korea
| | - Junhong Min
- School of Integrative Engineering
- Chung-Ang University
- Seoul
- South Korea
| |
Collapse
|
12
|
Zaman S, Ahmed S, Kabir M, Bari M. Microbiological risk assessment and simple cost-effective ways to reduce the risk in bulk food bags manufacturing company. J Food Saf 2018. [DOI: 10.1111/jfs.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sharmin Zaman
- Center for Advanced Research in Sciences, University of Dhaka; Dhaka Bangladesh
| | - Sunzid Ahmed
- Center for Advanced Research in Sciences, University of Dhaka; Dhaka Bangladesh
| | - Md.Raihan Kabir
- Quality Control & Assurance Division; Dutch-Bangla Pack Limited, Boro Baluakandi; Gazaria Munshiganj Bangladesh
| | - Md.Latiful Bari
- Center for Advanced Research in Sciences, University of Dhaka; Dhaka Bangladesh
| |
Collapse
|
13
|
Wilkinson MG. Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Shakeri MS, Shahidi F, Mortazavi A, Bahrami AR, Nassiri MR. Combination of competitive PCR and cultivation methods for differential enumeration of viable Lactobacillus acidophilus
in bio-yoghurts. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monir-Sadat Shakeri
- Department of Food Biotechnology; Research Institute of Food Science and Technology; Mashhad Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology; Faculty of Agriculture; Mashhad Iran
| | - Ali Mortazavi
- Department of Food Science and Technology; Faculty of Agriculture; Mashhad Iran
| | - Ahmad Reza Bahrami
- Cellular and Molecular Research Group; Institute of Biotechnology; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mohammad Reza Nassiri
- Department of Animal Science; Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
15
|
El-Aziz NKA, Tartor YH, El-Aziz Gharib AA, Ammar AM. Propidium Monoazide Quantitative Real-Time Polymerase Chain Reaction for Enumeration of Some Viable but Nonculturable Foodborne Bacteria in Meat and Meat Products. Foodborne Pathog Dis 2018; 15:226-234. [PMID: 29298099 DOI: 10.1089/fpd.2017.2356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Foodborne infections due to bacterial pathogens are increasing worldwide. Given the surreptitious nature of viable but nonculturable (VBNC) bacteria, they largely remain a threat to public health and food safety due to their non-detectability through conventional plate count techniques. Hence, species-specific quantitative real-time polymerase chain reaction (PCR) (qPCR) alone and combined with the use of propidium monoazide (PMA) was used along with the plate count method to quantify VBNC Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, and Enterobacteriaceae in fresh and processed meat samples. The major bacterial pathogen isolated was S. aureus (93%) followed by Enterobacteriaceae (80.33%), C. perfringens (26.33%), and B. cereus (21.33%); their total viable counts were mostly recorded in raw meat than examined meat products. PMA quantitative real-time PCR (PMA qRT-PCR) could detect and quantify VBNC bacteria in 90.48% of culture-negative samples. It affirmed the presence of VBNC S. aureus (n = 10), B. cereus (n = 8), C. perfringens (n = 6), and Enterobacteriaceae (n = 12) in either single or mixed bacterial contamination. The log10 mean values of VBNC bacterial counts were highly reported for C. perfringens and S. aureus (9.60 ± 0.449 and 8.27 ± 0.453 CFU/g, respectively) followed by Enterobacteriaceae (6.95 ± 0.564 CFU/g) and B. cereus (6.69 ± 0.749 CFU/g). Sequencing of rpoB gene of Enterobacteriaceae enabled the identification of Klebsiella pneumoniae complex, Enterobacter cloacae complex, and Salmonella Typhi, which have been reported to be capable of entry into the VBNC state. To our knowledge, this is the first report at least in Egypt that records the presence of VBNC cells in meat samples representing a strong threat to public health and food safety. Moreover, PMA qRT-PCR allowed a quick and unequivocal way of enumeration of VBNC foodborne bacteria.
Collapse
Affiliation(s)
- Norhan Khairy Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Yasmine Hasanine Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Ahlam Abd El-Aziz Gharib
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| | - Ahmed Mohamed Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
16
|
Saipullizan SNA, Mutalib SA, Sedek R. Escherichia coli and coliforms level of food utensils at food premises in Kuala Pilah, Malaysia. AIP CONFERENCE PROCEEDINGS 2018. [DOI: 10.1063/1.5028020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Gaudreault C, Salvas J, Sirois J. Savitzky-Golay smoothing and differentiation for polymerase chain reaction quantification. Biochem Cell Biol 2017; 96:380-389. [PMID: 29190123 DOI: 10.1139/bcb-2016-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In quantitative PCR (qPCR), replicates can minimize the impact of intra-assay variation; however, inter-assay variations must be minimized to obtain a robust quantification method. The method proposed in this study uses Savitzky-Golay smoothing and differentiation (SGSD) to identify a derivative-maximum-based cycle of quantification. It does not rely on curve modeling, as is the case with many existing techniques. PCR fluorescence data sets challenged for inter-assay variations (different thermocycler units, different reagents batches, different operators, different standard curves, and different labs) were used for the evaluation. The algorithm was compared with a four-parameter logistic model (4PLM) method, the Cy0 method, and the threshold method. The SGSD method compared favourably with all methods in terms of inter-assay variation. SGSD was statistically different from the 4PLM (P = 0.03), Cy0 (P = 0.05), and threshold (P = 0.004) methods on relative error comparison basis. For intra-assay variations, SGSD outperformed the threshold method (P = 0.005) and equalled the 4PLM and Cy0 methods (P > 0.05) on relative error basis. Our results demonstrate that the SGSD method could potentially be an alternative to sigmoid modeling based methods (4PLM and Cy0) when PCR data are challenged for inter-assay variations.
Collapse
Affiliation(s)
- Charles Gaudreault
- a Université de Sherbrooke, Engineering Faculty, 2500 boul. de l'université, QC J1K 2R1, Canada
| | - Joanny Salvas
- b Process Analytical Science Group, Pfizer Montréal, 1025 boul. Marcel-Laurin, Montréal, QC H4R 1J6, Canada
| | - Joël Sirois
- a Université de Sherbrooke, Engineering Faculty, 2500 boul. de l'université, QC J1K 2R1, Canada
| |
Collapse
|
18
|
Monteiro S, Santos R. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: Implications for public health risk assessment. J Appl Microbiol 2017; 124:965-976. [PMID: 28833965 DOI: 10.1111/jam.13568] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/03/2023]
Abstract
AIM To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. METHODS AND RESULTS Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. CONCLUSION The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. SIGNIFICANCE AND IMPACT OF THE STUDY Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses.
Collapse
Affiliation(s)
- S Monteiro
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| | - R Santos
- Laboratorio Analises, Instituto Superior Tecnico, Lisbon, Portugal
| |
Collapse
|
19
|
Zhao N, Cai J, Zhang C, Guo Z, Lu W, Yang B, Tian FW, Liu XM, Zhang H, Chen W. Suitability of various DNA extraction methods for a traditional Chinese paocai system. Bioengineered 2017; 8:642-650. [PMID: 28409998 DOI: 10.1080/21655979.2017.1300736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traditional paocai brine (PB), which is continuously propagated by back-slopping and contains various species of lactic acid bacteria (LAB), is critical for the flavor of paocai. Culture-independent approaches are commonly used to investigate the microbial communities of fermented food. To evaluate the influence of different DNA (DNA) extraction methods on estimates of bacterial community profiles from 4 PBs, the lysis efficiency, DNA yield, purity and denaturing gradient gel electrophoresis (DGGE) profiles of V3 region of a 16S ribosomal ribonucleic acid gene were acquired. The cell lysis pattern of SDS + beads and Lysing matrix E+ beads (methods 3 and 4) showed higher cell lysis efficiency than SDS and SDS + Lysozyme (methods 1 and 2) in all PBs. SDS + beads obtained the largest DNA yield of the 4 methods. Moreover, methods 3 and 4 resulted in higher H' values and generated more global bacteria profiles than other methods. Overall, our results demonstrate that the properties of PB significantly affect the efficiency of DNA extraction methods. Methods 3 and 4 were both suitable for DNA extraction from PB. Method 3 is more economic, simple and rapid than method 4 for large-scale studies of the bacterial profiles of PB.
Collapse
Affiliation(s)
- Nan Zhao
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China
| | - Jialiang Cai
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China
| | - Chuchu Zhang
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China
| | - Zhuang Guo
- d Northwest Hubei Research Institute of Traditional Fermented Food, College of Chemical Engineering and Food Science, Hu Bei University of Arts and Science , Xiangyang , China
| | - Wenwei Lu
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Bo Yang
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Feng-Wei Tian
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Xiao-Ming Liu
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Hao Zhang
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| | - Wei Chen
- a State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Wuxi , P.R. China.,b Beijing Innovation Centre of Food Nutrition and Human Health , Beijing Technology & Business University , Beijing , P.R. China.,c International Joint Research Laboratory for Probiotics at Jiangnan University
| |
Collapse
|
20
|
Losito P, Visciano P, Genualdo M, Satalino R, Migailo M, Ostuni A, Luisi A, Cardone G. Evaluation of hygienic conditions of food contact surfaces in retail outlets: Six years of monitoring. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Shi Y, Sun R, An D, Lu W, Zhang C, Wang L, Liu Y, Wang Q. Mathematical quantification of inactivation of Vibrio parahaemolyticus on two types of surface soiled with different substrates. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and Challenges in Viability Detection of Foodborne Pathogens. Front Microbiol 2016; 7:1833. [PMID: 27920757 PMCID: PMC5118415 DOI: 10.3389/fmicb.2016.01833] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR), sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology [conventional and real-time PCR (qPCR)] is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide and propidium monoazide (PMA) to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR), scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound) may eventually become a common methodology for the rapid, sensitive, and accurate detection of foodborne pathogens. In this review, we summarize the development in the field including progress and challenges and give our perspective in this area.
Collapse
Affiliation(s)
- Dexin Zeng
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zi Chen
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China
| | - Yuan Jiang
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China; Shanghai Entry-Exit Inspection and Quarantine BureauShanghai, China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel MD, USA
| |
Collapse
|
23
|
Julich S, Hotzel H, Gärtner C, Trouchet D, Fawzy El Metwaly Ahmed M, Kemper N, Tomaso H. Evaluation of a microfluidic chip system for preparation of bacterial DNA from swabs, air, and surface water samples. Biologicals 2016; 44:574-580. [PMID: 27520284 PMCID: PMC5119575 DOI: 10.1016/j.biologicals.2016.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/17/2015] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
The detection of bacterial pathogens from complex sample matrices by PCR requires efficient DNA extraction. In this study, a protocol for extraction and purification of DNA from swabs, air, and water samples using a microfluidic chip system was established. The optimized protocol includes a combination of thermal, chemical and enzymatic lysis followed by chip-based DNA purification using magnetic particles. The procedure was tested using Gram-positive Bacillus thuringiensis Berliner var. kurstaki as a model organism for Bacillus anthracis and the attenuated live vaccine strain of Francisella tularensis subsp. holarctica as Gram-negative bacterium. The detection limits corresponded to 103 genome equivalents per milliliter (GE/ml) for surface water samples spiked with F. tularensis and 102 GE/ml for B. thuringiensis. In air, 10 GE of F. tularensis per 10 L and 1 GE of B. thuringiensis per 10 L were detectable. For swab samples obtained from artificially contaminated surfaces the detection limits were 4 × 103 GE/cm2 for F. tularensis and 4 × 102 GE/cm2 for B. thuringiensis. Suitability of the chip-assisted procedure for DNA preparation of real samples was demonstrated using livestock samples. The presence of thermophilic Campylobacter spp. DNA could be confirmed in air samples collected on pig and broiler farms. A microfluidic chip system for magnetic bead-based DNA preparation was evaluated. Bacterial DNA was recovered from swabs, air, and surface water. A universal protocol was used for Gram-positive and Gram-negative bacteria. 10 GE of F. tularensis and 1 GE of B. thuringiensis per 10 l air were detectable. Thermophilic Campylobacter DNA was detected in air samples of pig and broiler farms.
Collapse
Affiliation(s)
- Sandra Julich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Straße 96a, 07743 Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Straße 96a, 07743 Jena, Germany
| | - Claudia Gärtner
- microfluidic ChipShop, Stockholmer Straße 20, 07747 Jena, Germany
| | - Daniel Trouchet
- Bertin Technologies, 10 Avenue André Marie Ampére, 78180 Montigny-le-Bretonneux, France
| | - Marwa Fawzy El Metwaly Ahmed
- Mansoura University, Faculty of Veterinary Medicine, Department of Animal Hygiene and Zoonoses, 60 El Gomhoria Street, 35516 Mansoura, Egypt
| | - Nicole Kemper
- University of Veterinary Medicine Hannover, Foundation, Institute of Animal Hygiene, Animal Welfare and Farm Animal Behaviour, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Naumburger Straße 96a, 07743 Jena, Germany.
| |
Collapse
|
24
|
Patrignani F, Siroli L, Gardini F, Lanciotti R. Contribution of Two Different Packaging Material to Microbial Contamination of Peaches: Implications in Their Microbiological Quality. Front Microbiol 2016; 7:938. [PMID: 27379067 PMCID: PMC4909747 DOI: 10.3389/fmicb.2016.00938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
AIM AIM of this work was understanding the microbial transfer dynamics from packaging to packed peaches in relation to the packaging used. METHOD AND RESULTS A challenge test was performed, inoculating Escherichia coli, Pseudomonas spp. and Saccharomyces cerevisiae on cardboards and RPC (Reusable Plastic Containers), and monitoring their cell loads on fruits according to a probabilistic model and a Response Surface Methodology (RSM) in relation to several independent variables (number of fruit lesions, fruit temperature storage and commercialization time). The data recorded on packed peaches for Pseudomonas and S. cerevisiae were modeled to fit the second order model to study the main, interactive and quadratic effects of the independent variables on the cell loads of target microorganisms as well as on the shelf-life of the fruits in relation to packaging material used. The data collected for E. coli were codified as presence (1) or absence (0) and modeled with a logistic regression analysis to assess the probability of E. coli transferring from packaging to fruits in relation to the adopted variables. The data showed a higher contamination frequency of the fruits packed in plastic than in cardboard. Increasing the storage temperature and the number of lesions, the probability of transferring of E. coli from packaging materials to fruits increased, independently on commercialization time or packaging used. For Pseudomonas, the contamination levels detected on fruits packaged in plastic were significantly higher compared to those found on fruits packed in cardboard, independently on the considered variables. The polynomial equations showed the S. cerevisiae cell loads of fruits stored in plastic was positively affected by the quadratic term of temperature. CONCLUSIONS the use of cardboard, compared to plastic, can significantly reduce the potential of microbial transferring from packaging to fruits. The probabilistic and kinetic models used showed a higher microbiological qualities of peaches stored in cardboard boxes, independently on the independent variables considered. The best performances of cardboard, compared to plastic, was probably due to its capability to entrap microbial cells. SIGNIFICANCE AND IMPACT cardboard reduces fruit contamination and increases their shelf-life with positive fallouts on fruit shelf-life and all the logistic and distribution chain.
Collapse
Affiliation(s)
| | | | | | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of BolognaCesena, Italy
| |
Collapse
|
25
|
Mikš-Krajnik M, Lim HSY, Zheng Q, Turner M, Yuk HG. Loop-mediated isothermal amplification (LAMP) coupled with bioluminescence for the detection of Listeria monocytogenes at low levels on food contact surfaces. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Cattani F, Barth VC, Nasário JSR, Ferreira CAS, Oliveira SD. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR. J Dairy Sci 2016; 99:2617-2624. [PMID: 26830746 DOI: 10.3168/jds.2015-10019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022]
Abstract
The Bacillus cereus group includes important spore-forming bacteria that present spoilage capability and may cause foodborne diseases. These microorganisms are traditionally evaluated in food using culturing methods, which can be laborious and time-consuming, and may also fail to detect bacteria in a viable but nonculturable state. The purpose of this study was to develop a quantitative real-time PCR (qPCR) combined with a propidium monoazide (PMA) treatment to analyze the contamination of UHT milk by B. cereus group species viable cells. Thirty micrograms per milliliter of PMA was shown to be the most effective concentration for reducing the PCR amplification of extracellular DNA and DNA from dead cells. The quantification limit of the PMA-qPCR assay was 7.5 × 10(2) cfu/mL of milk. One hundred thirty-five UHT milk samples were analyzed to evaluate the association of PMA to qPCR to selectively detect viable cells. The PMA-qPCR was able to detect B. cereus group species in 44 samples (32.6%), whereas qPCR without PMA detected 78 positive samples (57.8%). Therefore, the PMA probably inhibited the amplification of DNA from cells that were killed during UHT processing, which avoided an overestimation of bacterial cells when using qPCR and, thus, did not overvalue potential health risks. A culture-based method was also used to detect and quantify B. cereus sensu stricto in the same samples and showed positive results in 15 (11.1%) samples. The culture method and PMA-qPCR allowed the detection of B. cereus sensu stricto in quantities compatible with the infective dose required to cause foodborne disease in 3 samples, indicating that, depending on the storage conditions, even after UHT treatment, infective doses may be reached in ready-to-consume products.
Collapse
Affiliation(s)
- Fernanda Cattani
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil
| | - Valdir C Barth
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil
| | - Jéssica S R Nasário
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil
| | - Carlos A S Ferreira
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil
| | - Sílvia D Oliveira
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Everard CD, Kim MS, Lee H. Assessment of a handheld fluorescence imaging device as an aid for detection of food residues on processing surfaces. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Wang L, Ye C, Xu H, Aguilar ZP, Xiong Y, Lai W, Wei H. Development of an SD-PMA-mPCR assay with internal amplification control for rapid and sensitive detection of viable Salmonella spp., Shigella spp. and Staphylococcus aureus in food products. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Zhang Z, Liu W, Xu H, Aguilar ZP, Shah NP, Wei H. Propidium monoazide combined with real-time PCR for selective detection of viable Staphylococcus aureus in milk powder and meat products. J Dairy Sci 2015; 98:1625-1633. [PMID: 25582587 DOI: 10.3168/jds.2014-8938] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/08/2014] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a spherical, gram-positive, pathogenic bacterium commonly associated with bovine mastitis and clinical infections. It is also recognized as a pathogen that causes outbreaks of food poisoning. The objective of this study was to develop and evaluate a rapid and reliable technique that combines propidium monoazide (PMA) staining with real-time quantitative (q)PCR to detect and quantify viable cells of Staph. aureus in milk powder and meat products. The inclusivity and exclusivity of the assay were evaluated using 58 strains belonging to 14 species. Serial dilutions of Staph. aureus cells were used to establish a standard curve and to confirm the effect of PMA treatment. Milk powder and meat products were used as the spiked foods, and the ability of PMA-qPCR to eliminate nonviable cells was determined in milk powder. Furthermore, meat products were inoculated with different concentrations of Staph. aureus and 10(5) cfu/g of Bacillus cereus and Salmonella enterica to test the interference by nontarget microorganisms. When PMA treatment was applied before DNA extraction, we were able to eliminate false-positive results with little effect on viable cells. The PMA-qPCR assay was specific and more sensitive than conventional PCR, and the level of detection was 3.0×10(2) cfu/g in spiked milk powder. Additionally, we observed no significant interference for the detection of viable Staph. aureus from other nontarget bacteria. The PMA-qPCR protocol is an effective and rapid method to quantify viable cells of Staph. aureus in food samples. The PMA-qPCR assay is specific and reliable, offering a valuable diagnostic tool for routine analysis in food and clinical diagnostic research at a reasonable cost.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenting Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
30
|
Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10824-37. [PMID: 25329534 PMCID: PMC4211008 DOI: 10.3390/ijerph111010824] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 12/04/2022]
Abstract
ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.
Collapse
|
31
|
Shakeri MS, Shahidi F, Mortazavi A, Bahrami AR, Nassiri MR. Application of PCR Technique in Combination with DNase Treatment for Detection of Viable L
actobacillus acidophilus
Bacteria. J FOOD QUALITY 2014. [DOI: 10.1111/jfq.12093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Monir-Sadat Shakeri
- Department of Food Science and Technology; Ferdowsi University of Mashhad; Mashhad Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology; Ferdowsi University of Mashhad; Mashhad Iran
| | - Ali Mortazavi
- Department of Food Science and Technology; Ferdowsi University of Mashhad; Mashhad Iran
| | - Ahmad R. Bahrami
- Cellular and Molecular Research Group; Institute of Biotechnology; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mohammad R. Nassiri
- Department of Animal Science; Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
32
|
Soto-Muñoz L, Teixidó N, Usall J, Viñas I, Crespo-Sempere A, Torres R. Development of PMA real-time PCR method to quantify viable cells of Pantoea agglomerans CPA-2, an antagonist to control the major postharvest diseases on oranges. Int J Food Microbiol 2014; 180:49-55. [PMID: 24786552 DOI: 10.1016/j.ijfoodmicro.2014.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/03/2014] [Accepted: 04/06/2014] [Indexed: 11/16/2022]
Abstract
Dilution plating is the quantification method commonly used to estimate the population level of postharvest biocontrol agents, but this method does not permit a distinction among introduced and indigenous strains. Recently, molecular techniques based on DNA amplification such as quantitative real-time PCR (qPCR) have been successfully applied for their high strain-specific detection level. However, the ability of qPCR to distinguish viable and nonviable cells is limited. A promising strategy to avoid this issue relies on the use of nucleic acid intercalating dyes, such as propidium monoazide (PMA), as a sample pretreatment prior to the qPCR. The objective of this study was to optimize a protocol based on PMA pre-treatment samples combined with qPCR to distinguish and quantify viable cells of the biocontrol agent P. agglomerans CPA-2 applied as a postharvest treatment on orange. The efficiency of PMA-qPCR method under the established conditions (30μM PMA for 20min of incubation followed by 30min of LED light exposure) was evaluated on an orange matrix. Results showed no difference in CFU or cells counts of viable cells between PMA-qPCR and dilution plating. Samples of orange matrix inoculated with a mixture of viable/dead cells showed 5.59log10 CFU/ml by dilution plating, 8.25log10 cells/ml by qPCR, and 5.93log10 cells/ml by PMA-qPCR. Furthermore, samples inoculated with heat-killed cells were not detected by dilution plating and PMA-qPCR, while by qPCR was of 8.16log10 cells/ml. The difference in quantification cycles (Cq) among qPCR and PMA-qPCR was approximately 16cycles, which means a reduction of 65,536 fold of the dead cells detected. In conclusion, PMA-qPCR method is a suitable tool for quantify viable CPA-2 cells, which could be useful to estimate the ability of this antagonist to colonize the orange surface.
Collapse
Affiliation(s)
- Lourdes Soto-Muñoz
- Food Technology Department, Lleida University, XaRTA-Postharvest, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida Catalonia, Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida Catalonia, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida Catalonia, Spain
| | - Inmaculada Viñas
- Food Technology Department, Lleida University, XaRTA-Postharvest, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida Catalonia, Spain
| | - Ana Crespo-Sempere
- Applied Mycology Unit, Food Technology Department, Lleida University, XaRTA-UTPV, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida Catalonia, Spain
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida Catalonia, Spain.
| |
Collapse
|
33
|
Wang L, Li P, Yang Y, Xu H, Aguilar ZP, Xu H, Yang L, Xu F, Lai W, Xiong Y, Wei H. Development of an immunomagnetic separation–propidium monoazide–polymerase chain reaction assay with internal amplification control for rapid and sensitive detection of viable Escherichia coli O157:H7 in milk. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Wang L, Li P, Zhang Z, Chen Q, Aguilar ZP, Xu H, Yang L, Xu F, Lai W, Xiong Y, Wei H. Rapid and accurate detection of viable Escherichia coli O157:H7 in milk using a combined IMS, sodium deoxycholate, PMA and real-time quantitative PCR process. Food Control 2014; 36:119-125. [DOI: 10.1016/j.foodcont.2013.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Posada-Izquierdo G, Pérez-Rodríguez F, Zurera G. Mathematical quantification of microbial inactivation of Escherichia coli O157:H7 and Salmonella spp. on stainless steel surfaces soiled with different vegetable juice substrates. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Saad M, See TP, Abdullah MFF, Nor NM. Use of Rapid Microbial Kits for Regular Monitoring of Food-contact Surfaces towards Hygiene Practices. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.sbspro.2013.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Elizaquível P, Aznar R, Sánchez G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J Appl Microbiol 2013; 116:1-13. [DOI: 10.1111/jam.12365] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 01/09/2023]
Affiliation(s)
- P. Elizaquível
- Department of Microbiology and Ecology; University of Valencia; Valencia Spain
| | - R. Aznar
- Department of Microbiology and Ecology; University of Valencia; Valencia Spain
- Institute of Agrochemistry and Food Technology (IATA); Spanish Council for Scientific Research (CSIC); Valencia Spain
| | - G. Sánchez
- Institute of Agrochemistry and Food Technology (IATA); Spanish Council for Scientific Research (CSIC); Valencia Spain
| |
Collapse
|
38
|
Zhu RG, Li TP, Jia YF, Song LF. Quantitative study of viable Vibrio parahaemolyticus cells in raw seafood using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 2012; 90:262-6. [DOI: 10.1016/j.mimet.2012.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/25/2012] [Accepted: 05/27/2012] [Indexed: 11/25/2022]
|