1
|
Selva Sharma A, Lee NY. Advancements in visualizing loop-mediated isothermal amplification (LAMP) reactions: A comprehensive review of colorimetric and fluorometric detection strategies for precise diagnosis of infectious diseases. Coord Chem Rev 2024; 509:215769. [DOI: 10.1016/j.ccr.2024.215769] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Cui L, Chang W, Wei R, Chen W, Tang Y, Yue X. Aptamer and Ru(bpy)
3
2+
‐
AuNPs
‐based electrochemiluminescence biosensor for accurate detecting
Listeria monocytogenes
. J Food Saf 2022. [DOI: 10.1111/jfs.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liwei Cui
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Weidan Chang
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Rong Wei
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Weifeng Chen
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Yuanlong Tang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China Institute of Microbiology, Guangdong Academy of Sciences Guangzhou China
| | - Xiaoyu Yue
- Department of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| |
Collapse
|
3
|
Chen W, Cui L, Song Y, Chen W, Su Y, Chang W, Xu W. Detection of Listeria monocytogenes Using Luminol-Functionalized AuNF-Labeled Aptamer Recognition and Magnetic Separation. ACS OMEGA 2021; 6:26338-26344. [PMID: 34660993 PMCID: PMC8515604 DOI: 10.1021/acsomega.1c03527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
A capture probe was constructed using a combination of magnetic Fe3O4 nanoparticles and an aptamer directed towardListeria monocytogenes. A signal probe was prepared by combining luminol-functionalized flowerlike gold nanoparticles, obtained by combining luminol with chitosan bearing a complementary sequence of the aptamer. The complex consisting of the capture probe and signal probe could be removed through magnetic separation. Where the target was present within a sample, it competed with the complementary sequence for binding to the aptamer, causing a change of the chemiluminescent signal. The results indicated that a good linear relationship existed over the concentration range 1.0 × 101-1.0 × 105 CFU·mL-1. It was established that it was feasible to use this approach to detect L. monocytogenes at levels as low as 6 CFU·mL-1 in milk samples.
Collapse
Affiliation(s)
- Weifeng Chen
- School
of Food and Bioengineering, Henan University
of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Liwei Cui
- School
of Food and Bioengineering, Henan University
of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanyan Song
- School
of Food and Bioengineering, Henan University
of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wei Chen
- School
of Food and Bioengineering, Henan University
of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yuan Su
- Department
of Nutrition and Health, China Agricultural
University, Beijing 100083, China
| | - Weidan Chang
- School
of Food and Bioengineering, Henan University
of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wentao Xu
- Department
of Nutrition and Health, China Agricultural
University, Beijing 100083, China
| |
Collapse
|
4
|
Chen W, Wu J, Li S, Zhang H, Cui L, Liu J, Yao W. Ultrasensitive detection of
Listeria monocytogenes
using solid‐state electrochemiluminescence biosensing based on the quenching effect of ferrocene on ruthenium pyridine. J Food Saf 2020. [DOI: 10.1111/jfs.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weifeng Chen
- School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Jinsong Wu
- School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Shan Li
- School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Hefan Zhang
- School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Liwei Cui
- School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Juntao Liu
- School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Wang Yao
- School of Food and Bioengineering Henan University of Science and Technology Luoyang China
| |
Collapse
|
5
|
Li W, Mao R, Yue X, Wu J, Wu R, Qiao Y, Peng Q, Shi B, Luo Y, Chen X, Du Y. Competitive annealing mediated isothermal amplification (CAMP) for rapid and simple detection of Listeria monocytogenes in milk. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Application of Recombinase Polymerase Amplification with Lateral Flow for a Naked-Eye Detection of Listeria monocytogenes on Food Processing Surfaces. Foods 2020; 9:foods9091249. [PMID: 32906705 PMCID: PMC7555525 DOI: 10.3390/foods9091249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
The continuous contamination of foods with L. monocytogenes, highlights the need for additional controls in the food industry. The verification of food processing plants is key to avoid cross-contaminations, and to assure the safety of the food products. In this study, a new methodology for the detection of L. monocytogenes on food contact surfaces was developed and evaluated. It combines Recombinase Polymerase Amplification (RPA) with the lateral flow (LF) naked-eye detection. Different approaches for the recovery of the bacteria from the surface, the enrichment step and downstream analysis by RPA-LF were tested and optimized. The results were compared with a standard culture-based technique and qPCR analysis. Sampling procedure with sponges was more efficient for the recovery of the bacteria than a regular swab. A 24 h enrichment in ONE broth was needed for the most sensitive detection of the pathogen. By RPA-LF, it was possible to detect 1.1 pg/µL of pure L. monocytogenes DNA, and the complete methodology reached a LoD50 of 4.2 CFU/cm2 and LoD95 of 18.2 CFU/cm2. These results are comparable with the culture-based methodology and qPCR. The developed approach allows for a next-day detection without complex equipment and a naked-eye visualization of the results.
Collapse
|
7
|
Abatcha MG, Tan PL, Chuah LO, Rusul G, Chandraprasad SR, Effarizah ME. Evaluation of 3M™ loop-mediated isothermal amplification-based kit and 3M™ ready-to-use plating system for detection of Listeria in naturally contaminated leafy vegetables, chicken, and their related processing environments. Food Sci Biotechnol 2020; 29:1141-1148. [PMID: 32670668 DOI: 10.1007/s10068-020-00762-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of two different rapid methods involving the 3M™ molecular detection assay Listeria and the 3M™ Petrifilm environmental Listeria Plate were evaluated for the rapid detection of Listeria from naturally contaminated vegetables and chicken-processing environments against the standard culture-based method. A total of 178 samples were examined for the presence of Listeria. A total of 47/178 (26.4%) by standard ISO culture-based method (EN ISO 11290-1), 42/178 (23.6%) by 3M™ MDA Listeria and 40/178 (22.5%) by 3M™ Petrifilm EL Plate showed positive results, respectively. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value for 3M™ MDA Listeria and 3M™ Petrifilm EL Plate were 97.2, 89.4, 99.3, 97.7, 96.4% and 96.1, 85.1, 100.0, 100.0, 94.9%, respectively. Based on the Cohen's Kappa value, there was a complete and robust concordance between 3M™ MDA Listeria (0.911) and 3M™ Petrifilm EL Plates (0.894) as compared to the standard culture-based method.
Collapse
Affiliation(s)
- Mustapha Goni Abatcha
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Pei Ling Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Li-Oon Chuah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Gulam Rusul
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - S R Chandraprasad
- Food Safety Department, 3M Malaysia, Level 8, Block F, Oasis Square, Ara Damansara, 47301 Petaling Jaya, Selangor Malaysia
| | - Mohd Esah Effarizah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| |
Collapse
|
8
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Yushina Y, Makhova A, Zayko E, Bataeva D. Loop-mediated isothermal amplification (LAMP) for rapid detection of L. monocytogenes in meat. POTRAVINARSTVO 2019. [DOI: 10.5219/1165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a continued need to develop improved rapid methods for detection of foodborne pathogens. Rapid and sensitive methods for enumeration of Listeria monocytogenes are important for microbiological food safety testing purpose. The aim of this project was to evaluate a commercial loop-mediated isothermal amplification (LAMP) based system with bioluminescence, named as 3M™ Molecular Detection Assay (MDA), was validated for the detection of L. monocytogenes in food products with a standard GOST 32031-2012 method as reference. The results of this study revealed that a commercial LAMP-based method performed equally effective compared with method, showing from 94% to 100% specificity and sensitivity, respectively. The LAMP-based method was shown to be rapid and reliable detection technique for L. monocytogenes present at low numbers (10 CFU.g-1) on raw meat and meat products and can be applicable in meat industry. Thus, compared with the microbiological method based GOST 32031-2012, the LAMP assay is a relatively rapid and highly sensitive method for detecting L. monocytogenes and will facilitate the surveillance for contamination of L. monocytogenes in food. The 3M MDS result and culture-based detection (GOST 32031-2012) did not differ significantly (p >0.05) regarding the number of positive samples.
Collapse
|
10
|
Garrido-Maestu A, Azinheiro S, Carvalho J, Fuciños P, Prado M. Development and evaluation of loop-mediated isothermal amplification, and Recombinase Polymerase Amplification methodologies, for the detection of Listeria monocytogenes in ready-to-eat food samples. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
|
12
|
Liu A, Xiong Q, Shen L, Li W, Zeng Z, Li C, Liu S, Liu Y, Han G. A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|