1
|
Dai W, Liu S, Ding Y, Gu S, Zhou X, Ding Y. Insight into flavor changes in bighead carp (Aristichthys nobilis) fillets during storage based on enzymatic, microbial, and metabolism analysis. Food Chem 2024; 460:140505. [PMID: 39033638 DOI: 10.1016/j.foodchem.2024.140505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The flavor alterations in bighead carp subjected to varying storage temperatures and the underlying metabolic mechanism were elucidated. Analysis of volatile flavor compounds, electronic nose, free amino acids, ATP-related compounds, and sensory evaluations uncovered a progressive flavor deterioration during storage, especially at 25 °C. Metabolomics-based flavor relating component profiling analysis showed that free fatty acids formed various fatty aldehydes including (E, E)-2,4-heptadienal and nonanal under lipoxygenase catalysis. Alcohol dehydrogenase and alcohol acyltransferases were intimately involved in alcohol and ester generation, while alkaline phosphatase, 5'-nucleotidase, and acid phosphatase were closely associated with IMP, Hx, and HxR conversion, respectively. Aeromonas, Serratia, Lactococcus, Pseudomonas, and Peptostreptococcus notably influenced flavor metabolism and enzyme activities. The metabolism disparities of valine, leucine, isoleucine, lysine, and α-linolenic acid could be the primary factors contributing to flavor metabolism distinctions. This study offers novel insights into the flavor change mechanisms and potential regulation strategies of bighead carp during storage.
Collapse
Affiliation(s)
- Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yicheng Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
2
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
3
|
Zhao Y, Yu H, Li H, Qiu Y, Xia S, Zhang J, Zhu J. Effect of E-beam irradiation on the qualitative attributes of shrimp (Penaeus vannamei). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Yu H, Zhang J, Li H, Zhao Y, Xia S, Qiu Y, Zhu J. Effects of E-beam irradiation on the physicochemical properties of Atlantic cod ( Gadus morhua). FOOD BIOSCI 2022; 50:101803. [PMID: 35693638 PMCID: PMC9169420 DOI: 10.1016/j.fbio.2022.101803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022]
Abstract
Electron beam (E-beam) irradiation can effectively inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cold-chain seafood. This study evaluated the effects of E-beam irradiation at doses killing SARS-CoV-2 on quality indicators of Atlantic cod. The cod samples were exposed to 0, 2, 4, 7, and 10 kGy E-beam irradiation, and nutrition, texture, color, and sensory attributes were investigated. The results showed that E-beam irradiation significantly increased thiobarbituric acid (TBA) value and decreased hardness, chewiness, and a* value of Atlantic cod (P < 0.05). E-beam irradiation with 10 kGy significantly lowered total volatile base nitrogen (TVB-N) and reducing sugar content while increasing moisture and ash content (P < 0.05). A significant color change was observed after irradiation with 2 kGy-7 kGy E-beam (P < 0.05). E-beam irradiation had no effects on sensory attributes (P > 0.05). A dose of 4 kGy was recommended considering the keeping quality in Atlantic cod.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Honghao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yan Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengyao Xia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Qiu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang H, Zhou W. Low-energy X-ray irradiation: A novel non-thermal microbial inactivation technology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:287-328. [PMID: 35659355 DOI: 10.1016/bs.afnr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the last several decades, food irradiation technology has been proven neither to reduce the nutritional value of foods more than other preservation technologies, nor to make foods radioactive or dangerous to eat. Furthermore, food irradiation is a non-thermal food processing technology that helps preserve more heat sensitive nutrients than those found in thermally processed foods. Conventional food irradiation technologies, including γ-ray, electron beam and high energy X-ray, have certain limitations and drawbacks, such as involving radioactive isotopes, low penetration ability, and economical unfeasibility, respectively. Owing to the recent developments in instrumentation technology, more compact and cheaper tabletop low-energy X-ray sources have become available. The generation of low-energy X-ray, unlike γ-ray, does not involve radioactive isotopes and the cost is lower than high energy X-ray. Furthermore, low-energy X-ray possesses unique advantages, i.e., high linear energy transfer (LET) value and high relative biological effect (RBE) value. The advantages allow low-energy X-ray irradiation to provide a higher microbial inactivation efficacy than γ-ray and high energy X-ray irradiation. In the last few years, various applications reported in the literature indicate that low-energy X-ray irradiation has a great potential to become an alternative food preservation technique. This chapter discusses the technical advances of low-energy X-ray irradiation, microbial inactivation mechanism, factors influencing its efficiency, current applications, consumer acceptance, and limitations.
Collapse
Affiliation(s)
- Hongfei Zhang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Zianni R, Mentana A, Campaniello M, Chiappinelli A, Tomaiuolo M, Chiaravalle AE, Marchesani G. An investigation using a validated method based on HS-SPME-GC-MS detection for the determination of 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone in X-ray irradiated dairy products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Hussain MA, Sumon TA, Mazumder SK, Ali MM, Jang WJ, Abualreesh MH, Sharifuzzaman S, Brown CL, Lee HT, Lee EW, Hasan MT. Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Bekhit AEDA, Giteru SG, Holman BWB, Hopkins DL. Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Compr Rev Food Sci Food Saf 2021; 20:3620-3666. [PMID: 34056832 DOI: 10.1111/1541-4337.12764] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
The use of total volatile basic nitrogen (TVB-N) as a quality parameter for fish is rapidly growing to include other types of meat. Investigations of meat quality have recently focused on TVB-N as an index of freshness, but little is known on the biochemical pathways involved in its generation. Furthermore, TVB-N and methylated amines have been reported to exert deterimental health effects, but the relationship between these compounds and human health has not been critically reviewed. Here, literature on the formative pathways of TVB-N has been reviewed in depth. The association of methylated amines and human health has been critically evaluated. Interventions to mitigate the effects of TVB-N on human health are discussed. TVB-N levels in meat can be influenced by the diet of an animal, which calls for careful consideration when using TVB-N thresholds for regulatory purposes. Bacterial contamination and temperature abuse contribute to significant levels of post-mortem TVB-N increases. Therefore, controlling spoilage factors through a good level of hygiene during processing and preservation techniques may contribute to a substantial reduction of TVB-N. Trimethylamine (TMA) constitutes a significant part of TVB-N. TMA and trimethylamine oxide (TMA-N-O) have been related to the pathogenesis of noncommunicable diseases, including atherosclerosis, cancers, and diabetes. Proposed methods for mitigation of TMA and TMA-N-O accumulation are discussed, which include a reduction in their daily dietary intake, control of internal production pathways by targeting gut microbiota, and inhibition of flavin monooxygenase 3 enzymes. The levels of TMA and TMA-N-O have significant health effects, and this should, therefore, be considered when evaluating meat quality and acceptability. Agreed international values for TVB-N and TMA in meat products are required. The role of feed, gut microbiota, and translocation of methylated amines to muscles in farmed animals requires further investigation.
Collapse
Affiliation(s)
| | - Stephen G Giteru
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Food & Bio-based Products, AgResearch Limited, Tennent Drive, Palmerston North, 4410, New Zealand
| | - Benjamin W B Holman
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| | - David L Hopkins
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| |
Collapse
|
9
|
Chen W, Ma S, Wang Q, McClements DJ, Liu X, Ngai T, Liu F. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit Rev Food Sci Nutr 2021; 62:5029-5055. [PMID: 33554629 DOI: 10.1080/10408398.2021.1881435] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Collapse
Affiliation(s)
- Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
10
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
11
|
Zhang D, Zhang S, He K, Wang L, Sui F, Hong X, Li W, Li N, Jia M, Li W, Wang Z, Wang Z, Du B, Wei L, Feng Y, Zhong G, Li W, Chen J, Yang C, Chen M. High-performance x-ray source based on graphene oxide-coated Cu 2S nanowires grown on copper film. NANOTECHNOLOGY 2020; 31:485202. [PMID: 32931468 DOI: 10.1088/1361-6528/abb0b6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Full static x-ray computed tomography (CT) technology has enabled higher precision and resolution imaging and has been applied in many applications such as diagnostic medical imaging, industrial inspection and security screening. In this technique, the x-ray source section is mainly composed of a thermionic cathode and electron beam scanning system. However, they have several shortcomings such as limited scanning angle, long response time and large volume. Distributed and programmable cold cathode (i.e. carbon nanotubes, ZnO nanowires (NWs)) field-emission x-ray sources are expected to solve these problems. However, there have been several long-standing challenges to the application of such cold field emitters for x-ray sources, such as the short lifetime and rigorous fabrication process, which have fundamentally prevented their widespread use. Here, we propose and demonstrate a cold field-emission x-ray source based on a graphene oxide (GO)-coated cuprous sulfide nanowire (Cu2S NW/GO) cathode. The proposed Cu2S NW/GO x-ray source provides stable emission (>18 h at a direct voltage of 2600 V) and has a low threshold (4.5 MV m-1 for obtaining a current density of 1 μA cm-2), benefiting from the demonstrated key features such as in situ epitaxy growth of Cu2S NWs on Cu, nanometer-scale sharp protrusions within GO and charge transfer between the Cu2S NWs and GO layer. Our research provides a simple and robust method to obtain a high-performance cold field emitter, leading to great potential for the next generation of x-ray source and CT.
Collapse
Affiliation(s)
- Daoshu Zhang
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Siyuan Zhang
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Ke He
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Libin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Fan Sui
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xuda Hong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Weiwei Li
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Nianci Li
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meiling Jia
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Weimin Li
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zongpeng Wang
- Shenzhen Angell Technology Co. Ltd., Shenzhen 518057, People's Republic of China
| | - Bi Du
- Shenzhen Angell Technology Co. Ltd., Shenzhen 518057, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ye Feng
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Guohua Zhong
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Wenjie Li
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Chunlei Yang
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Zehi ZB, Afshari A, Noori SM, Jannat B, Hashemi M. The Effects of X-Ray Irradiation on Safety and Nutritional Value of Food: A Systematic Review Article. Curr Pharm Biotechnol 2020; 21:919-926. [DOI: 10.2174/1389201021666200219093834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
X-ray is a non-thermal technology that has shown good efficacy in reducing pathogenic and
spoilage bacteria, viruses and parasites. X-ray hygiene technology resulted in a high microbial loss in
numerous food products, such as dairy products, ready-to-eat shrimp, oysters, fresh products, strawberries,
shredded iceberg lettuce, and spinach leaves. Some X-ray studies on food safety have shown that
X-ray is an effective technology and is also an appropriate alternative to the electron beam and gamma
rays, and can be used in the food industry without side effects on human health. Besides, we reviewed
the X-ray effect on the nutritional value of food. Therefore in this study, we aimed to review the available
pros and cons of current studies regarding X-rays’ effects on the food industry.
Collapse
Affiliation(s)
- Zakiyeh B. Zehi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed M.A. Noori
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Liu Y, Zhang F, Zhu B, Ruan X, Yi X, Li J, Gao Y, Hui G. Effect of sodium lactate coating enriched with nisin on beef strip loins (M. Longissimus lumborum) quality during cold storage and electronic nose rapid evaluation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00548-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Sun Y, Xu Y, Gao P, Xia W, Hua Q, Jiang Q. Improvement of the quality stability of vacuum‐packaged fermented fish (
Suanyu
) stored at room temperature by irradiation and thermal treatments. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yingying Sun
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Qian Hua
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology 1800 Lihu Ave Wuxi Jiangsu 214122 China
| |
Collapse
|
15
|
Ricciardi EF, Lacivita V, Conte A, Chiaravalle E, Zambrini AV, Del Nobile MA. X-ray irradiation as a valid technique to prolong food shelf life: The case of ricotta cheese. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104547] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Lacivita V, Mentana A, Centonze D, Chiaravalle E, Zambrini VA, Conte A, Del Nobile MA. Study of X-Ray irradiation applied to fresh dairy cheese. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yu D, Wu L, Regenstein JM, Jiang Q, Yang F, Xu Y, Xia W. Recent advances in quality retention of non-frozen fish and fishery products: A review. Crit Rev Food Sci Nutr 2019; 60:1747-1759. [DOI: 10.1080/10408398.2019.1596067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liying Wu
- Yangtze Delta Region of Institute of Tsinghua University, Zhejiang, Jiaxing, Zhejiang, China
| | | | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Yu D, Regenstein JM, Xia W. Bio-based edible coatings for the preservation of fishery products: A Review. Crit Rev Food Sci Nutr 2018; 59:2481-2493. [DOI: 10.1080/10408398.2018.1457623] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | | | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Huang M, Zhang M, Bhandari B. Recent development in the application of alternative sterilization technologies to prepared dishes: A review. Crit Rev Food Sci Nutr 2018; 59:1188-1196. [DOI: 10.1080/10408398.2017.1421140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengsha Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China
- International Joint Laboratory on Food Safety, Jiangnan University, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Xuan XT, Cui Y, Lin XD, Yu JF, Liao XJ, Ling JG, Shang HT. Impact of High Hydrostatic Pressure on the Shelling Efficacy, Physicochemical Properties, and Microstructure of Fresh Razor Clam (Sinonovacula constricta). J Food Sci 2018; 83:284-293. [PMID: 29355952 DOI: 10.1111/1750-3841.14032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 12/09/2017] [Indexed: 11/26/2022]
Abstract
The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P < 0.05) increased shelling efficiency, water-holding capacity, pH, conductivity, and lipid oxidation, and HHP-treated razor clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. PRACTICAL APPLICATION High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on quality of razor clam treated by HHP.
Collapse
Affiliation(s)
- Xiao-Ting Xuan
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Yan Cui
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Xu-Dong Lin
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Jing-Feng Yu
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| | - Xiao-Jun Liao
- College of Food Science and Nutritional Engineering, China Agricultural Univ., Beijing 100083, China
| | - Jian-Gang Ling
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China.,Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hai-Tao Shang
- Inst. of Agricultural Products Processing, Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang 315400, China
| |
Collapse
|
21
|
Wu Y, Chang S, Nannapaneni R, Zhang Y, Coker R, Mahmoud BS. The effects of X-ray treatments on bioaccumulated murine norovirus-1 (MNV-1) and survivability, inherent microbiota, color, and firmness of Atlantic oysters (Crassostrea virginica) during storage at 5 °C for 20 days. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Wu Y, Chang S, Nannapaneni R, Coker R, Haque Z, Mahmoud BS. The efficacy of X-ray doses on murine norovirus-1 (MNV-1) in pure culture, half-shell oyster, salmon sushi, and tuna salad. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|