1
|
Zhu H, Ni ZJ, Thakur K, Zhang JG, Chen ZL, Khan MR, Wei ZJ. Inclusion of reeling wastewater-derived sericin peptides in high-protein nutrition bars for antihardening and storage stability. Food Chem 2024; 451:139441. [PMID: 38678656 DOI: 10.1016/j.foodchem.2024.139441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.
Collapse
Affiliation(s)
- Hongtao Zhu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhi-Jing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; Xinyuan Cocoon Silk Group Co., Ltd., Haian 226600, People's Republic of China.
| | - Kiran Thakur
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jian-Guo Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhong-Li Chen
- Xinyuan Cocoon Silk Group Co., Ltd., Haian 226600, People's Republic of China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
2
|
Zhu H, Zhang XX, Zhang R, Feng JY, Thakur K, Zhang JG, Wei ZJ. Anti-hardening effect and mechanism of silkworm sericin peptide in high protein nutrition bars during early storage. Food Chem 2023; 407:135168. [PMID: 36508867 DOI: 10.1016/j.foodchem.2022.135168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Hardening presents an inevitable challenge during the storage of high protein nutrition bars. Sericin peptide is the product of hydrolysis of sericin, a protein from the silkworm cocoon. Here in, the effects of sericin peptide addition on the hardening of high protein nutrition bars during 72 h of storage were investigated. The addition of sericin peptide to high protein nutrition bars reduced the hardening of the sample during the early storage, The main mechanism was to improve the mobility of water and small hydrophilic molecules, which slowed down the phase separation. As well, after sericin peptide addition, the ζ- potential, the content of secondary structure, and the surface hydrophobicity of the samples were also changed, which prevented the self-aggregation of proteins. These results indicate that SRP can be used as a promising anti-hardening ingredient in the food industry to improve the texture of food products.
Collapse
Affiliation(s)
- Hongtao Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xiu-Xiu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Rui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
3
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
4
|
Khalifa I, Nawaz A, Sobhy R, Walyat N, Zou X, Farag MA, Li C. Recent Advances in Nutritious Appetizers: Characteristics, Formulas, Technical Attributes, and Health Benefits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Remah Sobhy
- Department of Biochemistry, Faculty of Agriculture, Benha University, Egypt
| | - Noman Walyat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University/Key Laboratory of Environment Correlative Food Science, Ministry of Education, Wuhan, China
| |
Collapse
|
5
|
Zhang J, Liu D, Liu Y, Yu Y, Hemar Y, Regenstein JM, Zhou P. Effects of particle size and aging of milk protein concentrate on the biophysical properties of an intermediate-moisture model food system. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Effect of anticaking agents on hardening and Maillard-induced protein aggregation in high-protein nutrition bars formulated with whey protein concentrate. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Banach JC, Clark S, Lamsal BP. Particle Size of Milk Protein Concentrate Powder Affects the Texture of High-Protein Nutrition Bars During Storage. J Food Sci 2017; 82:913-921. [PMID: 28267879 DOI: 10.1111/1750-3841.13684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/21/2017] [Accepted: 02/05/2017] [Indexed: 11/28/2022]
Abstract
Milk protein concentrate powder with 85% protein (MPC85) was jet-milled to give 2 particle size distributions (that is, JM-Coarse and JM-Fine) or freeze-dried (FD), in order to improve the functional properties of MPC85 for use in high-protein nutrition (HPN) bars. Volume-weighted mean diameter decreased from 86 μm to 49, 22, and 8 μm in FD, JM-Coarse, and JM-Fine, respectively (P < 0.05). The MPC85 powders modified by jet-milling and freeze-drying were significantly denser than the control MPC85 (P < 0.05). Volume of occluded air in the modified powders decreased (P < 0.05) by an order of magnitude, yet only FD possessed a lower volume of interstitial air (P < 0.05). Particle size reduction and freeze-drying MPC85 decreased its water holding capacity and improved its dispersibility by at least 20%. Contact angle measurements showed that these modifications increased initial hydrophobicity and did not improve wettability. HPN bars made from JM-Fine or FD were firmer by 40 or 17 N, respectively, than the control on day 0 (P < 0.05). HPN bar maximum compressive force increased by 38%, 33%, and 242% after 42 d at 32 °C when formulated with JM-Fine, FD, or control MPC85, respectively. HPN bars prepared with JM-Fine were less crumbly than those formulated with control or FD MPC85. Physically altering the particle structure of MPC85 improved its ability to plasticize within HPN bars and this improved their cohesiveness and textural stability.
Collapse
Affiliation(s)
- J C Banach
- Iowa State Univ., Food Science and Human Nutrition, 2312 Food Sciences Building, Ames, IA, 50011, U.S.A
| | - S Clark
- Iowa State Univ., Food Science and Human Nutrition, 2312 Food Sciences Building, Ames, IA, 50011, U.S.A
| | - B P Lamsal
- Iowa State Univ., Food Science and Human Nutrition, 2312 Food Sciences Building, Ames, IA, 50011, U.S.A
| |
Collapse
|
8
|
Banach J, Clark S, Metzger L, Lamsal B. Textural performance of crosslinked or reduced-calcium milk protein ingredients in model high-protein nutrition bars. J Dairy Sci 2016; 99:6061-6070. [DOI: 10.3168/jds.2016-10995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
|