1
|
Wang L, Ding B, Hu X, Li G, Deng Y. Rationally Engineering pH Adaptation of Acid-Induced Arginine Decarboxylase from Escherichia coli to Alkaline Environments to Efficiently Biosynthesize Putrescine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307779. [PMID: 38569221 PMCID: PMC11186044 DOI: 10.1002/advs.202307779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Acid-induced arginine decarboxylase AdiA is a typical homo-oligomeric protein biosynthesizing alkaline nylon monomer putrescine. However, upon loss of the AdiA decamer oligomeric state at neutral and alkaline conditions the activity also diminishes, obstructing the whole-cell biosynthesis of alkaline putrescine. Here, a structure cohesion strategy is proposed to change the pH adaptation of AdiA to alkaline environments based on the rational engineering of meridional and latitudinal oligomerization interfaces. After integrating substitutions of E467K at the latitudinal interface and H736E at the meridional channel interface, the structural stability of AdiA decamer and its substrate transport efficiency at neutral and alkaline conditions are improved. Finally, E467K_H736E is well adapted to neutral and alkaline environments (pH 7.0-9.0), and its enzymatic activity is 35-fold higher than that of wild AdiA at pH 8.0. Using E467K_H736E in the putrescine synthesis pathway, the titer of putrescine is up to 128.9 g·L-1 with a conversion of 0.94 mol·mol-1 in whole-cell catalysis. Additionally, the neutral pH adaptation of lysine decarboxylase, with a decamer structure similar to AdiA, is also improved using this cohesion strategy, providing an option for pH-adaptation engineering of other oligomeric decarboxylases.
Collapse
Affiliation(s)
- Li Wang
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Bo Ding
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Xiangyang Hu
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Guohui Li
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| |
Collapse
|
2
|
Prasad M, Milton A, Menon V, Ghatak S, Srinivas K, Momin K, Vineesha S, Das S, Sen A, Latha C, Sunil B, Jolly D. Saltatory rolling circle amplification assay for simple and visual detection of Listeria monocytogenes in milk and milk products. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Lv X, Cao W, Zhang H, Zhang Y, Shi L, Ye L. CE-RAA-CRISPR Assay: A Rapid and Sensitive Method for Detecting Vibrio parahaemolyticus in Seafood. Foods 2022; 11:foods11121681. [PMID: 35741880 PMCID: PMC9223090 DOI: 10.3390/foods11121681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Vibrio parahaemolyticus is one of the major pathogenic Vibrio species that contaminate seafood. Rapid and accurate detection is crucial for avoiding foodborne diseases caused by pathogens and is important for food safety management and mariculture. In this study, we established a system that combines chemically enhanced clustered regularly interspaced short palindromic repeats (CRISPR) and recombinase-aided amplification (RAA) (CE–RAA–CRISPR) for detecting V. parahaemolyticus in seafood. The method combines RAA with CRISPR-associated protein 12a (Cas12a) for rapid detection in a one-pot reaction, effectively reducing the risk of aerosol contamination during DNA amplifier transfer. We optimized the primers for V. parahaemolyticus, determined the optimal crRNA/Cas12a ratio, and demonstrated that chemical additives (bovine serum albumin and L-proline) could enhance the detection capacity of Cas12a. The limit of detection (at optimal conditions) was as low as 6.7 × 101 CFU/mL in pure cultures and 7.3 × 101 CFU/g in shrimp. Moreover, this method exhibited no cross-reactivity with other microbial pathogens. The CE–RAA–CRISPR assay was compared with the quantitative polymerase chain reaction assay using actual food samples, and it showed 100% diagnostic agreement.
Collapse
Affiliation(s)
- Xinrui Lv
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Weiwei Cao
- College of Food and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China;
| | - Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Yilin Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
- Correspondence:
| |
Collapse
|
4
|
Wang L, Zhao P, Si X, Li J, Dai X, Zhang K, Gao S, Dong J. Rapid and Specific Detection of Listeria monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers. Front Microbiol 2020; 10:2959. [PMID: 32117075 PMCID: PMC7025549 DOI: 10.3389/fmicb.2019.02959] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogenic bacterium that is explicitly threatening public health and food safety. Rapid, simple, and sensitive detection methods for this pathogen are of urgent need for the increasing on-site testing demands. Application of the isothermal recombinase polymerase amplification (RPA) and the lateral flow strip (LFS) in the detection is promising for fast speed, high sensitivity, and little dependency on equipment and trained personnel. However, the simplicity comes with an intrinsic and non-negligible risk, the false-positive signals from primer–dimers. In this study, an improved RPA–LFS system was established for detection of L. monocytogenes that eliminated false-positive signals from primer–dimers. Primer candidates were carefully selected from the entire L. monocytogenes genome sequence and rigorously screened for specific amplifications in PCR and RPA reactions. For the optimal primer pairs, probes that matched the targeted fragment sequences, although had the smallest chance to form cross-dimers with the primers, were designed and screened. The intelligent use of the probe successfully linked the positive signal to the actual amplification product. This RPA–LFS system was highly specific to L. monocytogenes and was able to detect as low as 1 colony-forming unit of the bacterium per reaction (50 μl) without DNA purification, or 100 fg of the genomic DNA/50 μl. The amplification could be conducted under the temperature between 37 and 42°C, and the whole detection finished within 25 min. Test of artificially contaminated milk gave 100% accuracy of detection without purification of the samples. Various food samples spiked with 10 colony-forming unit of L. monocytogenes per 25 g or 25 ml were successfully detected after an enrichment time period of 6 h. The RPA–LFS system established in this study is a rapid, simple, and specific detection method for L. monocytogenes that has eliminated false-positive results from primer–dimers. In addition, this study has set a good example of eliminating the false-positive risk from primer–dimers in isothermal amplification-based detection methods, which is applicable to the development of detection technologies for other pathogens.
Collapse
Affiliation(s)
- Lei Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Xiaofang Dai
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Kunxiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
5
|
Sangadkit W, Weeranoppanant N, Thipayarat A. An integrated enrichment-detection platform for identification of contamination of Vibrio parahaemolyticus in food samples. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Instrument-Free and Visual Detection of Salmonella Based on Magnetic Nanoparticles and an Antibody Probe Immunosensor. Int J Mol Sci 2019; 20:ijms20184645. [PMID: 31546808 PMCID: PMC6769488 DOI: 10.3390/ijms20184645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonella, a common foodborne pathogen, causes many cases of foodborne illness and poses a threat to public health worldwide. Immunological detection systems can be combined with nanoparticles to develop sensitive and portable detection technologies for timely screening of Salmonella infections. Here, we developed an antibody-probe-based immuno-N-hydroxysuccinimide (NHS) bead (AIB) system to detect Salmonella. After adding the antibody probe, Salmonella accumulated in the samples on the surfaces of the immuno-NHS beads (INBs), forming a sandwich structure (INB–Salmonella–probes). We demonstrated the utility of our AIB diagnostic system for detecting Salmonella in water, milk, and eggs, with a sensitivity of 9 CFU mL−1 in less than 50 min. The AIB diagnostic system exhibits highly specific detection and no cross-reaction with other similar microbial strains. With no specialized equipment or technical requirements, the AIB diagnostic method can be used for visual, rapid, and point-of-care detection of Salmonella.
Collapse
|
7
|
Zhang Y, Tian J, Li K, Tian H, Xu W. Label-free visual biosensor based on cascade amplification for the detection of Salmonella. Anal Chim Acta 2019; 1075:144-151. [PMID: 31196420 DOI: 10.1016/j.aca.2019.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Salmonella is a widely distributed, extremely harmful bacteria, the presence of which requires confirmation via an on-site visual biosensor. In this study, we constructed a label-free, cascade amplification visualization biosensor for the sensitive and rapid detection of Salmonella enterica subsp. enterica serovar typhimurium based on the RDTG principle (recombinase polymerase amplification (RPA), duplex-specific enzyme (DSN) cleavage, terminal deoxynucleotidyl transferase (TdT) extension and G-quadruplexes output). Following DNA extraction of Salmonella spp., the first step in the construction involved the recognition and amplification of nucleic acids, carried out by RPA, to achieve the first signal amplification within 10 min. This RPA product was then specifically cleaved by DSN to produce a large number of small double-stranded DNA (dsDNA) products with 3'-OH within 15 min to achieve the second signal amplification. Thereafter, TdT was employed to empower these small 3'-OH dsDNA products to extend and produce a large number of long G-rich single-stranded DNAs (ssDNAs) within 20 min, thus realizing the third signal increase. These long G-rich ssDNA products displayed a color change that could be directly observed through the naked eye by adding H2O2/3,3',5,5'-tetramethylbenzidine (TMB). The RDTG biosensor for the detection of Salmonella spp. has several advantages, including a low limit of 6 cfu/mL. It is an isothermal-free instrument, simple to operate, with a rapid detection time of less than 1.5 h. Furthermore, it can be visually characterized and quantified by a microplate reader to detect Salmonella spp., in food and environmental samples, and it has broad application prospects.
Collapse
Affiliation(s)
- Yuan Zhang
- College of Food Science and Technology Agricultural University of Hebei, 071001, Baoding, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jingjing Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kai Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongtao Tian
- College of Food Science and Technology Agricultural University of Hebei, 071001, Baoding, China.
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
8
|
Liu HB, Zang YX, Du XJ, Li P, Wang S. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria. J Dairy Sci 2017; 100:7016-7025. [DOI: 10.3168/jds.2017-12566] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
|
9
|
Ding T, Suo Y, Zhang Z, Liu D, Ye X, Chen S, Zhao Y. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment. Front Microbiol 2017; 8:989. [PMID: 28620364 PMCID: PMC5449760 DOI: 10.3389/fmicb.2017.00989] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/16/2017] [Indexed: 11/13/2022] Open
Abstract
This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.
Collapse
Affiliation(s)
- Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| | - Yuanjie Suo
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| | - Shiguo Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| |
Collapse
|