1
|
Ma Y, Ma Y, Chi L, Wang S, Zhang D, Xiang Q. Lauric arginate ethyl ester: An update on the antimicrobial potential and application in the food systems. Front Microbiol 2023; 14:1125808. [PMID: 36910208 PMCID: PMC9995605 DOI: 10.3389/fmicb.2023.1125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lauric arginate ethyl ester (LAE), a cationic surfactant with low toxicity, displays excellent antimicrobial activity against a broad range of microorganisms. LAE has been approved as generally recognized as safe (GRAS) for widespread application in certain foods at a maximum concentration of 200 ppm. In this context, extensive research has been carried out on the application of LAE in food preservation for improving the microbiological safety and quality characteristics of various food products. This study aims to present a general review of recent research progress on the antimicrobial efficacy of LAE and its application in the food industry. It covers the physicochemical properties, antimicrobial efficacy of LAE, and the underlying mechanism of its action. This review also summarizes the application of LAE in various foods products as well as its influence on the nutritional and sensory properties of such foods. Additionally, the main factors influencing the antimicrobial efficacy of LAE are reviewed in this work, and combination strategies are provided to enhance the antimicrobial potency of LAE. Finally, the concluding remarks and possible recommendations for the future research are also presented in this review. In summary, LAE has the great potential application in the food industry. Overall, the present review intends to improve the application of LAE in food preservation.
Collapse
Affiliation(s)
- Yunfang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Yanqing Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Lei Chi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Shaodan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Dianhe Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
2
|
Tang T, Zhang M, Mujumdar AS. Intelligent detection for fresh-cut fruit and vegetable processing: Imaging technology. Compr Rev Food Sci Food Saf 2022; 21:5171-5198. [PMID: 36156851 DOI: 10.1111/1541-4337.13039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 01/28/2023]
Abstract
Fresh-cut fruits and vegetables are healthy and convenient ready-to-eat foods, and the final quality is related to the raw materials and each step of the cutting unit. It is necessary to integrate suitable intelligent detection technologies into the production chain so as to inspect each operation to ensure high product quality. In this paper, several imaging technologies that can be applied online to the processing of fresh-cut products are reviewed, including: multispectral/hyperspectral imaging (M/HSI), fluorescence imaging (FI), X-ray imaging (XRI), ultrasonic imaging, thermal imaging (TI), magnetic resonance imaging (MRI), terahertz imaging, and microwave imaging (MWI). The principles, advantages, and limitations of these imaging technologies are critically summarized. The potential applications of these technologies in online quality control and detection during the fresh-cut processing are comprehensively discussed, including quality of raw materials, contamination of cutting equipment, foreign bodies mixed in the processing, browning and microorganisms of the cutting surface, quality/shelf-life evaluation, and so on. Finally, the challenges and future application prospects of imaging technology in industrialization are presented.
Collapse
Affiliation(s)
- Tiantian Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Effects of lauroyl arginate ethyl (LAE) on pathogen inactivation and quality attributes of spinach leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Fink R, Filip S. Surface-active natural saponins. Properties, safety, and efficacy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022:1-10. [PMID: 35213278 DOI: 10.1080/09603123.2022.2043252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In the future, cleaning products must fulfil the principles of green chemistry while maintaining efficacy against bacteria. This study aims to evaluate the detergent properties, ecotoxicity, and anti-biofilm potential of natural saponins compared to synthetic surfactants. We tested sodium dodecyl sulphate, quillaja saponin, escin, and sapogenin for emulsifying capacity, critical micelle concentration, ecotoxicity to yeast, and antibacterial and anti-biofilm potential against bacteria. The results show that the emulsifying capacities of quillaja saponin and sodium dodecyl sulphate are similar, while the critical micelle concentration for quillaja saponin is much lower . Furthermore, the antibacterial and antibiofilm potentials are much higher for quillaja saponin than for synthetic sodium dodecyl sulphate . Moreover, we have shown that natural saponins are less toxic to the S. cerevisiae than synthetic saponin is. All these facts indicate that quillaja is a suitable candidate to replace synthetic products as it meets the requirements of efficacy and safety.
Collapse
Affiliation(s)
- Rok Fink
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Filip
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- HQF Solutions d.o.o., Ljubljana, Slovenia
| |
Collapse
|
5
|
Li T, Liu Y, Qin Q, Zhao L, Wang Y, Wu X, Liao X. Development of electrospun films enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
The addition of royal jelly to dairy probiotic dessert produced with predictive microbiology: Influence on physicochemical, rheological, microbial and sensorial properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Schnabel U, Handorf O, Winter H, Weihe T, Weit C, Schäfer J, Stachowiak J, Boehm D, Below H, Bourke P, Ehlbeck J. The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive. Front Nutr 2021; 7:627483. [PMID: 33585539 PMCID: PMC7873297 DOI: 10.3389/fnut.2020.627483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces.
Collapse
Affiliation(s)
- Uta Schnabel
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Oliver Handorf
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Hauke Winter
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Thomas Weihe
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Christoph Weit
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jan Schäfer
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jörg Stachowiak
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Daniela Boehm
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Harald Below
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Paula Bourke
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Science, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| |
Collapse
|
8
|
Ma Q, Davidson PM, Zhong Q. Properties and potential food applications of lauric arginate as a cationic antimicrobial. Int J Food Microbiol 2020; 315:108417. [DOI: 10.1016/j.ijfoodmicro.2019.108417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
|
9
|
Woo H, Kang J, Lee C, Song KB. Application of
Cudrania tricuspidata
leaf extract as a washing agent to inactivate
Listeria monocytogenes
on fresh‐cut romaine lettuce and kale. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hyuk‐Je Woo
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| | - Ji‐Hoon Kang
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| | - Chae‐Hun Lee
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| | - Kyung Bin Song
- Department of Food Science and Technology Chungnam National University Daejeon34134Korea
| |
Collapse
|
10
|
Wu D, Lu J, Zhong S, Schwarz P, Chen B, Rao J. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food Funct 2019; 10:2817-2827. [PMID: 31049507 DOI: 10.1039/c9fo00470j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of ionic surfactants (cationic surfactant lauric arginate and anionic surfactant lysolecithin) on the physical properties, antifungal and mycotoxin inhibitory efficacy of Tween 80 stabilized cinnamon oil-in-water nanoemulsions was investigated. Nanoemulsion droplets of similar particle diameter (∼100 nm), but variable electrical characteristics, were formed by mixing 0.1 wt% ionic surfactant with 0.9 wt% Tween 80 before homogenization. The nanoemulsions were physically stable over 28 days at 23 °C. The antifungal activity (against mycelial growth and spore germination) and mycotoxin inhibitory activity of cinnamon oil nanoemulsions bearing positive, neutral, and negative charge surface was then evaluated against two chemotypes of Fusarium graminearum. In general, the cinnamon oil played a decisive role in the resulting antifungal and mycotoxin inhibitory activities. The surfactant charge had a limited impact on the antifungal mycotoxin inhibitory activities of cinnamon oil in the nanoemulsions. Both ionic surfactant-based cinnamon oil nanoemulsions showed greater activity in inhibiting mycelial growth and mycotoxin production of F. graminearum than those based on Tween 80. Treatment of mycelium with cinnamon oil nanoemulsions resulted in the loss of cytoplasm from fungal hyphae, and accounted for the antifungal action. These results have important implications for the design of essential oil based nanoemulsions as effective antifungal delivery systems in foods.
Collapse
Affiliation(s)
- Dianhui Wu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Nübling S, Hägele F, Schweiggert RM, Carle R, Schmidt H, Weiss A. Effect of Different Wash Water Additives and Deep-Frozen Storage on the Quality of Curly Parsley (Petroselinum crispum var. crispum). FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2201-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Nair MS, Saxena A, Kaur C. Characterization and Antifungal Activity of Pomegranate Peel Extract and its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum (Capsicum annuum L.). FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2101-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|