1
|
Dong H, Liu S, Wang X, Li M, Perumpuli Arachchige BN, Wang X. Effect of Ultra-High-Pressure Treatment on Gastrodia elata Blume: Drying Characteristics, Components, and Neuroprotective Activity. Foods 2024; 13:3534. [PMID: 39593950 PMCID: PMC11592632 DOI: 10.3390/foods13223534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Gastrodiae Rhizoma (GE), a popular food in China, is stored and consumed after steaming, which can lead to the degradation of active substances and a decrease in its quality. Therefore, this study explored the potential application of ultra-high-pressure (UHP)-assisted hot air drying in improving the quality of GE. The results indicated that UHP pre-treatment could preserve the original cross-sectional color of GE and increase the degrees of freedom of water in GE samples. Compared with traditional steaming pre-treatment (18 h), UHP pre-treatment at 500 MPa significantly shorted the time (10 h) required for the GE samples to reach drying equilibrium. Meanwhile, the UHP-assisted hot air drying method (60 °C) could reduce the activity of β-D-glucosidase and avoid the degradation of active substances. Finally, UHP pre-treatment improved the neuroprotective activity in vivo. Overall, UHP-assisted hot air drying could improve the quality of GE samples. This study provides a simple method for improving the quality of GE samples and offers a reference for subsequent research on the influence of UHP on GE.
Collapse
Affiliation(s)
- Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (B.N.P.A.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (B.N.P.A.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinming Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (B.N.P.A.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Meng Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (B.N.P.A.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Buddhika Niroshie Perumpuli Arachchige
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (B.N.P.A.)
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China (B.N.P.A.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
2
|
Wu S, Yang R. Effect of high-pressure processing on polyphenol oxidase, melanosis and quality in ready-to-eat crabs during storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Effects of Ultra-High Pressure on Endogenous Enzyme Activities, Protein Properties, and Quality Characteristics of Shrimp (Litopenaeus vannamei) during Iced Storage. Molecules 2022; 27:molecules27196302. [PMID: 36234840 PMCID: PMC9571125 DOI: 10.3390/molecules27196302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to explore the effects of ultra-high pressure (UHP) on the cathepsin (B, D, H, and L) activities, protein oxidation, and degradation properties as well as quality characteristics of iced shrimp (Litopenaeus vannamei). Fresh shrimps were vacuum-packed, treated with UHP (100–500 MPa for 5 min), and stored at 0 °C for 15 days. The results showed that the L* (luminance), b* (yellowness), W (whiteness), ΔE (color difference), hardness, shear force, gumminess, chewiness, and resilience of shrimp were significantly improved by UHP treatment. Moreover, the contents of surface hydrophobicity, myofibril fragmentation index (MFI), trichloroacetic acid (TCA)-soluble peptides, carbonyl, dityrosine, and free sulfhydryl of myofibrillar protein (MP) were significantly promoted by UHP treatment. In addition, UHP (above 300 MPa) treatment enhanced the mitochondrial membrane permeability but inhibited the lysosomal membrane stability, and the cathepsin (B, D, H, and L) activities. UHP treatment notably inhibited the activities of cathepsins, delayed protein oxidation and degradation, as well as texture softening of shrimp during storage. Generally, UHP treatment at 300 MPa for 5 min effectively delayed the protein and quality deterioration caused by endogenous enzymes and prolonged the shelf life of shrimp by 8 days.
Collapse
|
4
|
Roobab U, Fidalgo LG, Arshad RN, Khan AW, Zeng XA, Bhat ZF, Bekhit AEDA, Batool Z, Aadil RM. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Compr Rev Food Sci Food Saf 2022; 21:3297-3325. [PMID: 35638360 DOI: 10.1111/1541-4337.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong, China
| | - Liliana G Fidalgo
- Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, Beja, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Abdul Waheed Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu and Kashmir, India
| | - Ala El-Din A Bekhit
- Department of Food Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Zahra Batool
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
High pressure processing pretreatment of Chinese mitten crab (Eriocheir sinensis) for quality attributes assessment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Li P, Sun L, Wang J, Wang Y, Zou Y, Yan Z, Zhang M, Wang D, Xu W. Effects of combined ultrasound and low-temperature short-time heating pretreatment on proteases inactivation and textural quality of meat of yellow-feathered chickens. Food Chem 2021; 355:129645. [PMID: 33799244 DOI: 10.1016/j.foodchem.2021.129645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of combined ultrasound and low-temperature short-time heating (ULTSTH) (40 kHz, 0.2 W/cm2 at 55 °C for 15 min) as pretreatment on proteases inactivation and textural quality of yellow-feathered chicken (YFC). Results showed ultrasound and low-temperature heating synergistically improved the inactivation of the most important meat proteases, calpain, cathepsin B and total proteases, with kinetics following the first order decay(s). Degradation of meat proteins was effectively reduced by ULTSTH compared to the pretreatment of chilling. Importantly, ULTSTH increased the firmness of breast meat and led to improved texture and microstructure. Lipid and protein oxidation of meat pretreated with ULTSTH were reduced during refrigerated storage period. Additionally, microorganisms in meat were inactivated by ULTSTH, which resulted in an obvious increase in the shelf life of meat. These findings suggested that ULTSTH is promising as an alternative pretreatment to obtain a favorable textural quality of YFC.
Collapse
Affiliation(s)
- Pengpeng Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Liangge Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jiankang Wang
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuanxin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Zou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Zheng Yan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Muhan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Daoying Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Weimin Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| |
Collapse
|
7
|
Lan W, Hu X, Sun X, Zhang X, Xie J. Effect of the number of freeze-thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vannamei): An emphasis on moisture migration and microstructure by LF-NMR and SEM. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2019.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Identification of Microfluidization Processing Conditions for Quality Retention of Sugarcane Juice Using Genetic Algorithm. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Effect of High Pressure Carbon Dioxide on polyphenoloxidase from Litopenaeus vannamei. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Novel approach to identify phenoloxidases inhibitors: Optimization of spectrophotometric MBTH assay for high throughput use enzymatic assays and analysis. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|