1
|
Díaz-Avello UG, Skouridou V, Shkembi X, Reverté J, Mandalakis M, Peristeraki P, Campàs M, O'Sullivan CK. Aptamer-antibody sandwich lateral flow test for rapid visual detection of tetrodotoxin in pufferfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179419. [PMID: 40245514 DOI: 10.1016/j.scitotenv.2025.179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/09/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Tetrodotoxin (TTX) is a highly potent marine toxin which can cause severe poisoning following consumption of contaminated fish and seafood. Thus, a sensitive, reliable and simple test is required for rapid screening of samples and prevention of intoxication. Herein, we translated a previously reported microtiter plate hybrid aptamer-antibody assay into a rapid lateral flow assay (LFA) test. The test relies on an aptamer immobilized on the membrane and an antibody conjugated with gold nanoparticles to provide a visual result when TTX is present in the sample. The optimized test is simple (one-step), rapid (<20 min), highly sensitive (visual limit of detection of 0.3 ng/mL TTX in buffer corresponding to 0.78 mg TTX/kg tissue), specific, reproducible and with long storage life. It was validated by analyzing contaminated pufferfish tissue extracts and it successfully detected TTX below the current limits set by official bodies. The analysis performed with this device in combination with a simple LFA reader for quantification was in excellent agreement with other established methods, further demonstrating the value of this test as a simple, low-cost and reliable analytical tool to ensure food safety, protect human health, and broaden the knowledge on the correlation between biological parameters and environmental data.
Collapse
Affiliation(s)
- Ulises G Díaz-Avello
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Spain
| | - Vasso Skouridou
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Xhensila Shkembi
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Jaume Reverté
- Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 710 03 Heraklion, Greece
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03 Heraklion, Greece
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), 43540 La Ràpita, Spain
| | - Ciara K O'Sullivan
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Institució Català de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
2
|
Zhang S, Chen L, Tan Y, Wu S, Guo P, Jiang X, Pan H. Deep learning assisted quantitative detection of cardiac troponin I in hierarchical dendritic copper-nickel nanostructure lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6715-6725. [PMID: 39259228 DOI: 10.1039/d4ay01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The rising demand for point-of-care testing (POCT) in disease diagnosis has made LFIA sensors based on dendritic metal thin film (HD-nanometal) and background fluorescence technology essential for rapid and accurate disease marker detection, thanks to their integrated design, high sensitivity, and cost-effectiveness. However, their unique 3D nanostructures cause significant fluorescence variation, challenging traditional image processing methods in segmenting weak fluorescence regions. This paper develops a deep learning method to efficiently segment target regions in HD-nanometal LFIA sensor images, improving quantitative detection accuracy. We propose an improved UNet++ network with attention and residual modules, accurately segmenting varying fluorescence intensities, especially weak ones. We evaluated the method using IoU and Dice coefficients, comparing it with UNet, Deeplabv3, and UNet++. We used an HD-nanoCu-Ni LFIA sensor for cardiac troponin I (cTnI) as a case study to validate the method's practicality. The proposed method achieved a 96.3% IoU, outperforming other networks. The R2 between characteristic quantity and cTnI concentration reached 0.994, confirming the method's accuracy and reliability. This enhances POCT accuracy and provides a reference for future fluorescence immunochromatography expansion.
Collapse
Affiliation(s)
- Shenglan Zhang
- Key Laboratory of Advanced Manufacturing and Automation Technology(Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541006, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, China
- College of Environment and Science, Guilin University of Technology, Guilin 541006, China.
| | - Liqiang Chen
- Key Laboratory of Advanced Manufacturing and Automation Technology(Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541006, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, China
| | - YuXin Tan
- College of Environment and Science, Guilin University of Technology, Guilin 541006, China.
| | - Shaojie Wu
- Key Laboratory of Advanced Manufacturing and Automation Technology(Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541006, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Pengxin Guo
- Key Laboratory of Advanced Manufacturing and Automation Technology(Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541006, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Xincheng Jiang
- Key Laboratory of Advanced Manufacturing and Automation Technology(Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541006, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Hongcheng Pan
- College of Environment and Science, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
3
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Liu S, Huo Y, Hu Z, Cao G, Gao Z. A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin. Mikrochim Acta 2023; 191:57. [PMID: 38153525 DOI: 10.1007/s00604-023-06118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445 nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555 nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555 nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445 nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027 ng/mL and a linear range of 0.05-500 ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.
Collapse
Affiliation(s)
- Sha Liu
- Binzhou Medical University, Yantai, 264003, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Zhiyong Hu
- Binzhou Medical University, Yantai, 264003, China
| | - Gaofang Cao
- Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- Binzhou Medical University, Yantai, 264003, China.
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
7
|
Highly sensitive and quantitative fluorescent strip immunosensor based on an independent control system for rapid detection of tetrodotoxin in shellfish. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
10
|
Wang H, Ren HL, Hu P, Li YS, Zheng Y, Cao Q, Liu ZX, Liu ZS, Yang Y, Lu SY. A Fluorescence Immunochromatographic Strip Based on Quantum Dot Nanobeads for the Rapid Detection of Okadaic Acid. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
12
|
Liu S, Huo Y, Deng S, Li G, Li S, Huang L, Ren S, Gao Z. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens Bioelectron 2021; 201:113891. [PMID: 34999522 DOI: 10.1016/j.bios.2021.113891] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
The development of ultrasensitive, reliable, and facile detection technologies for trace tetrodotoxin (TTX) is challenging. We presented a facile dual-mode aptamer-based biosensor (aptasensor) for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy (SERS) detection of TTX by using gold nanoparticles (AuNPs)-embedded metal-organic framework (MOF) nanohybrids (AuNPs@MIL-101) because of their superior properties. A TTX-specific aptamer labelled with fluorescence and Raman reporter cyanine-3 (Cy3-aptamer) was selected as the recognition element and signal probe. Without immobilisation processing steps, Cy3-aptamers were effectively adsorbed onto the surface of AuNPs@MIL-101, thereby generating both fluorescence quenching and SERS enhancement. The preferential binding of TTX towards the Cy3-aptamer triggered the release of rigid Cy3-aptamer-TTX complexes from the AuNPs@MIL-101 surface, which resulted in recovered fluorescence signals and weakened SERS signals. Switched fluorescence and SERS intensities exhibited excellent linear relationships with logarithms of TTX concentrations of 0.01-300 ng/mL, and ultrahigh detection sensitivities of 6 and 8 pg/mL, respectively, were obtained. Furthermore, two quantitative detection approaches for TTX-spiked puffer fish and clam samples obtained satisfactory spiked recoveries and coefficient of variation (CV) values. Notably, the dual-mode aptasensor also successfully determined natural TTX-contaminated samples, showing excellent practical applications. The results indicated that this dual-mode measurement not only was ultrasensitive and simple but also markedly boosted analysis reliability and precision. This study is the first to propose a dual-mechanism AuNPs@MIL-101-based aptasensor for detection of trace TTX and provides a favourable pathway for developing multimode sensing platforms for various applications.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Sumei Deng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Guanghua Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Lei Huang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
13
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Vaz R, Valpradinhos B, Frasco MF, Sales MGF. Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds. SENSORS (BASEL, SWITZERLAND) 2021; 21:5784. [PMID: 34502675 PMCID: PMC8434157 DOI: 10.3390/s21175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
Optical biosensors are used in numerous applications and analytical fields. Advances in these sensor platforms offer high sensitivity, selectivity, miniaturization, and real-time analysis, among many other advantages. Research into bioactive natural products serves both to protect against potentially dangerous toxic compounds and to promote pharmacological innovation in drug discovery, as these compounds have unique chemical compositions that may be characterized by greater safety and efficacy. However, conventional methods for detecting these biomolecules have drawbacks, as they are time-consuming and expensive. As an alternative, optical biosensors offer a faster, simpler, and less expensive means of detecting various biomolecules of clinical interest. In this review, an overview of recent developments in optical biosensors for the detection and monitoring of aquatic biotoxins to prevent public health risks is first provided. In addition, the advantages and applicability of these biosensors in the field of drug discovery, including high-throughput screening, are discussed. The contribution of the investigated technological advances in the timely and sensitive detection of biotoxins while deciphering the pathways to discover bioactive compounds with great health-promoting prospects is envisaged to meet the increasing demands of healthcare systems.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Beatriz Valpradinhos
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Manuela F. Frasco
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| | - Maria Goreti F. Sales
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; (R.V.); (M.G.F.S.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal
| |
Collapse
|
15
|
Shen H, Song E, Wang Y, Meng L, Dong J, Lin B, Huang D, Guan Z, Yang C, Zhu Z. In situ Raman enhancement strategy for highly sensitive and quantitative lateral flow assay. Anal Bioanal Chem 2021; 414:507-513. [PMID: 34089334 DOI: 10.1007/s00216-021-03419-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
As a paper-based analytical platform, lateral flow assay (LFA) gets benefit from the rapid analysis, low cost, high selectivity, good stability, and user-friendliness, and thus has been widely used in rapid screening or assisted diagnosis. Nevertheless, LFA still suffers from low detection sensitivity via the naked eye, limiting its applications to qualitative and semi-quantitative tests. To enhance the signal readout, various nanoparticle signal tags have been employed to replace traditional colloidal gold nanoparticles (AuNPs), such as fluorescent nanoparticles (FNPs), magnetic nanoparticles (MNPs), and Raman reporter-labeled nanoparticles. In particular, Raman reporter-labeled nanoparticles are extremely sensitive due to remarkable signal enhancement effect on metal surface. However, the application of LFA is still hampered by the poor stability of Raman reporter-labeled nanoparticles. Herein, we developed an in situ Raman enhancement strategy to create a surface-enhanced Raman scattering (SERS) signal on the AuNPs, shortened as "i-SERS," which not only preserves the original advantages of the colloidal gold strip (AuNPs-LFA), but also realizes highly sensitive and quantitative detection. We applied the i-SERS for procalcitonin (PCT) detection. The experimental process takes only 16 min, and the limit of detection (LOD) is 0.03 ng mL-1, far below the value using AuNPs-LFA. These results indicate that i-SERS assay was highly sensitive and suitable for the rapid detection of PCT.
Collapse
Affiliation(s)
- Haicong Shen
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Eunyeong Song
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yang Wang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Lingyan Meng
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jing Dong
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Bingqian Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Di Huang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhichao Guan
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chaoyong Yang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Zhi Zhu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
16
|
Zhang SW, Sun YY, Sun YM, Wang H, Li ZF, Xu ZL. Visual upconversion nanoparticle-based immunochromatographic assay for the semi-quantitative detection of sibutramine. Anal Bioanal Chem 2020; 412:8135-8144. [PMID: 32914397 DOI: 10.1007/s00216-020-02944-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Immunochromatographic assay (ICA) has been used widely for the onsite monitoring of illegal additives due to its simplicity, speed, and low cost. However, a scanner is commonly required for ICA to achieve quantitative results. In this work, we developed a visual semi-quantitative ICA for sibutramine, a banned additive in diet foods, without the need for a scanner for measurement. Monoclonal antibodies specific for sibutramine were raised and conjugated with upconversion nanoparticles (UCNPs) as the luminescent tracer. ICA was developed by employing multiple test lines to achieve the semi-quantitative detection of sibutramine. Based on the optimal conditions, the cutoff levels (limit of quantitation, LOQ) of T1 line, T2 line, T3 line, and T4 line were 0.02 μg/mL, 0.15 μg/mL, 1.0 μg/mL, and 7.5 μg/mL, respectively, in buffer system. The ICA demonstrated a LOQ at 0.2 mg/kg for sibutramine in diet food samples. The assay (including pretreatment) can be finished within 30 min without the aid of other instruments, except a laser pen. No false positive or false negative results were observed. The results indicated that the proposed method was reliable, simple, and rapid for the screening of sibutramine abuse in diet food samples.
Collapse
Affiliation(s)
- Shi-Wei Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,National Nutrition Food Testing Center, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518055, Guangdong, China
| | - Yan-Yan Sun
- Department of Anaesthesiology, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, China.
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
17
|
Lan Y, Qin G, Wei Y, Wang L, Dong C. Exonuclease I-assisted fluorescence aptasensor for tetrodotoxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110417. [PMID: 32171958 DOI: 10.1016/j.ecoenv.2020.110417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/02/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
A fluorescence aptasensor for the highly specific and sensitive determination of tetrodotoxin was established with tetrodotoxin-aptamer as the recognition unit, berberine as the signal reporter and exonuclease I as the elimination agent for the background. Berberine has a weak fluorescence emission at 540 nm, and it can form the tetrodotoxin-aptamer/berberine complex, resulted in an increased fluorescence. After introducing exonuclease I, it can degrade the single strand oligonucleotides of tetrodotoxin-aptamer into the single nucleotide in the absence of tetrodotoxin, which lead to dramatic fluorescence quenching, and reduce the background signal of sensing system. Once tetrodotoxin is in the presence, tetrodotoxin-aptamer is converted into the stable neck ring conformation, which resists the degradation of exonuclease I and provides a more rigid micro-environment for the excited state of berberine, and then the strong fluorescence is observed. Based on the above properties, an ultrasensitive label-free fluorescence aptasensor for tetrodotoxin is established. The fluorescence aptasensor shows good analytical performance with the linear increase of fluorescence intensity at the tetrodotoxin concentration from 0.030 nM to 6.0 × 103 nM. The detection limit of 11.0 pM is much lower than that of other reported sensor methods.
Collapse
Affiliation(s)
- Yifeng Lan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Guojie Qin
- Institute of Horticulture, Shanxi Academy of Agriculture Science, Taiyuan, 030031, China
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
18
|
Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the Diisobutyl phthalate in Yoghurt. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Li S, Zhang Y, Wen W, Sheng W, Wang J, Wang S, Wang J. A high-sensitivity thermal analysis immunochromatographic sensor based on au nanoparticle-enhanced two-dimensional black phosphorus photothermal-sensing materials. Biosens Bioelectron 2019; 133:223-229. [PMID: 30951982 DOI: 10.1016/j.bios.2019.03.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/17/2022]
Abstract
For the first time, a quantitative photothermal-sensing immunochromatographic sensor (PT-ICS) is described using Au nanoparticle-enhanced two-dimensional black phosphorus (BP-Au) as signal component for the photothermal-sensing antibody probe. BP-Au has good photothermal properties at 808 nm, and the photothermal conversion efficiency of the BP-Au nanosheet increased by 12.9% over the black phosphorus nanosheet alone. In addition, the antibody was more easily coupled to this nanosheet due to the good physical adsorption capacity of Au nanoparticles. We used this PT-ICS to detect veterinary antibiotics enrofloxacin (ENR), the photothermal-sensing antibody probe was competitive captured by ENR target and antigen coating on test (T) lines of the sensor. This process was exothermic under an 808 nm laser, and the thermal energy decreased as the ENR in the sample increased. This thermal energy was recorded by an infrared thermal imager or an infrared thermometer, and the concentration of the ENR residues in animal-derived foods was obtained by analyzing the temperature changes in T-lines. Under optimal conditions, the PT-ICS exhibited sensitive and specific detection of ENR from 0.03 μg/L to 10 μg/L with detection limits of 0.023 μg/L. The results agreed well with a commercial enzyme-linked-immunosorbent assay kit. This PT-ICS provided a promising strategy for the detection of ENR residues in animal-derived foods and expected to be used for the detection of other highly sensitive biomacromolecules.
Collapse
Affiliation(s)
- Shijie Li
- State Key Laboratory for Food Nutrition and Safety; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ying Zhang
- State Key Laboratory for Food Nutrition and Safety; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wenjun Wen
- State Key Laboratory for Food Nutrition and Safety; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Sheng
- State Key Laboratory for Food Nutrition and Safety; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Junying Wang
- The Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, Beijing 10010, PR China
| | - Shuo Wang
- Beijing Technology and Business University, Higher Education Garden, Liangxiang, Beijing 100035, PR China.
| | - Junping Wang
- State Key Laboratory for Food Nutrition and Safety; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
20
|
A novel fluorescent immunochromatographic strip combined with pocket fluorescence observation instrument for rapid detection of PRV. Anal Bioanal Chem 2018; 410:7655-7661. [PMID: 30246220 DOI: 10.1007/s00216-018-1379-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Pseudorabies virus (PRV) is an acute and thermal infectious disease in domestic animals. Pigs are a main source of PRV infection, which causes high mortality rates for newborn infected piglets and high miscarriage rates for infected adults. Therefore, early control of PRV is necessary to avoid significant economic loss. We have developed a novel fluorescent immunochromatographic strip (F-ICS) for rapid, sensitive, and specific detection of PRV with a limit of detection (LOD) of 0.13 ng mL-1 and a detection linear range (DLR) between 0.13 and 2.13 ng mL-1. The detection limit was about 10 times lower than the colloidal gold strip. In tests of clinical samples, the F-ICS was largely consistent with PCR results, indicating its practical clinical application. In addition, for easy observation of the F-ICS signal by eye, we present a matching 3D-printed pocket fluorescence observation instrument (PFOI) that allows for use of the F-ICS in the field as easily as conventional colloidal gold strips. Graphical Abstract ᅟ.
Collapse
|
21
|
Pan R, Jiang Y, Sun L, Wang R, Zhuang K, Zhao Y, Wang H, Ali MA, Xu H, Man C. Gold nanoparticle-based enhanced lateral flow immunoassay for detection of Cronobacter sakazakii in powdered infant formula. J Dairy Sci 2018; 101:3835-3843. [DOI: 10.3168/jds.2017-14265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
|
22
|
Shen H, Xu F, Xiao M, Fu Q, Cheng Z, Zhang S, Huang C, Tang Y. A new lateral-flow immunochromatographic strip combined with quantum dot nanobeads and gold nanoflowers for rapid detection of tetrodotoxin. Analyst 2017; 142:4393-4398. [DOI: 10.1039/c7an01227f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive, rapid detection strip based on nanoparticles for tetrodotoxin detection was developed and it meets all testing requirements.
Collapse
Affiliation(s)
- Haicong Shen
- Department of Bioengineering
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou 510632
- PR China
| | - Fei Xu
- Department of Bioengineering
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou 510632
- PR China
| | - Meng Xiao
- Department of Bioengineering
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou 510632
- PR China
| | - Qiangqiang Fu
- Department of Bioengineering
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou 510632
- PR China
| | - Zhenzhu Cheng
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- PR China
| | - Shiwei Zhang
- Food Testing Institute
- Shenzhen Academy of Metrology & Quality Inspection
- Shenzhen
- China
| | - Caihong Huang
- Department of Bioengineering
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou 510632
- PR China
| | - Yong Tang
- Department of Bioengineering
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering
- Jinan University
- Guangzhou 510632
- PR China
| |
Collapse
|