1
|
Chilenga C, Masamba K, Kasapila W, Ndhlovu B, Munkhuwa V, Rafoneke L, Machira K. Mycotoxin management in Sub-Saharan Africa: A comprehensive systematic review of policies and strategies in Malawi. Toxicol Rep 2025; 14:101871. [PMID: 39811817 PMCID: PMC11731241 DOI: 10.1016/j.toxrep.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Food safety challenges, such as mycotoxin contamination, pose severe threats to public health, agricultural productivity, and economic development across Sub-Saharan African countries and beyond. This study investigated whether government policies related to food safety adequately address these concerns, using Malawi as a case study. We systematically reviewed 29 government-authored policy documents related to food safety. These documents were categorized into six sectors: Agriculture, Environment, Nutrition, Health, Trade and Industry, and Education. Our analysis revealed critical gaps in addressing mycotoxin concerns in these policies, with only 4 of the 29 policy documents (14 %) addressing food safety and mycotoxin management. In contrast, 13 policy documents (45 %) did not address these issues at all, while 12 policy documents (41 %) focused solely on food safety management without addressing mycotoxin contamination. Notably, Malawi's long-term development blueprint, Malawi 2063 , does not include mycotoxin management, underscoring a critical policy gap and broader systemic challenges in integrating food safety and mycotoxin control into national frameworks. Furthermore, Malawi lacks a dedicated sector responsible for food safety and a comprehensive national food safety policy to coordinate efforts in mycotoxin control. While this study centers on Malawi, the findings resonate globally, particularly in Sub-Saharan Africa and other countries with similar agricultural and economic contexts. Addressing these systemic policy gaps is vital for developing integrated food safety frameworks that combat mycotoxin contamination, strengthen sustainable food systems, enhance public health, and foster economic resilience. These findings also provide a replicable model for policy analysis, contributing to international discourse by emphasizing the importance of aligning food safety governance with global development priorities, such as the Sustainable Development Goals.
Collapse
Affiliation(s)
- Chimwemwe Chilenga
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
- Department of Nutrition, HIV and AIDs, Ministry of Health, P/Bag B401, Lilongwe, Malawi
| | - Kingsley Masamba
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
| | - William Kasapila
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
| | - Brown Ndhlovu
- Browns Consulting Company PO Box 274, Rumphi, Malawi
| | - Victor Munkhuwa
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
- Ministry of Health, Lilongwe Health Office, PO Box 1274, Lilongwe, Malawi
| | - Lintle Rafoneke
- Browns Consulting Company PO Box 274, Rumphi, Malawi
- Department of Agricultural Economics, LUANAR, Africa Center of Excellence in Agriculture Policy Analysis (APA), P.O box 219, Lilongwe, Malawi
| | - Kennedy Machira
- Browns Consulting Company PO Box 274, Rumphi, Malawi
- Department of Agricultural Economics, LUANAR, Africa Center of Excellence in Agriculture Policy Analysis (APA), P.O box 219, Lilongwe, Malawi
| |
Collapse
|
2
|
Ogutu FO, Okiko G, Wanjala G, Luvitaa S, Oure B, Vriesekoop F, Munialo CD. Food Safety Aspects as Potential Impediment to the Adoption of Plant-Based Alternative Protein Products in Sub-Saharan Africa. Food Sci Nutr 2025; 13:e70050. [PMID: 40125417 PMCID: PMC11928746 DOI: 10.1002/fsn3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/07/2024] [Accepted: 01/21/2025] [Indexed: 03/25/2025] Open
Abstract
The emergence and use of alternative proteins that seem to provide a sustainable solution to feeding the growing human population going into the future continue to gain momentum. However, there is not much research work on the safety of foods formulated using alternative proteins such as those of plant origin, aka plant-based foods. Therefore, this review discusses the safety issues of producing and processing plant-based foods. Special attention is paid to sub-Saharan Africa, where most of the impact of climate change is felt, resulting in poor crop yields and reduced ability for thriving livestock production to serve as food for human consumption. Thus, the adoption of alternative plant-based foods would be a good strategy to combat issues such as poor nutrition status that continue to be a plight to this region. There are safety concerns that relate to the introduction of alternative plant-based protein foods which need to be overcome for these foods to be adopted in many food systems. The following safety concerns pertaining to plant-based food production and processing were identified in the literature and are discussed in this work; the presence of allergens (from ingredients like soy, gluten, and nuts), anti-nutritional factors (such as saponins, alkaloids, and isoflavones), mycotoxins, potential contamination with pathogenic microorganisms (e.g., Salmonella spp., E. coli, Bacillus spp., Listeria spp., Clostridium sporogenes, and Geobacillus stearothermophilus), and the existence of potential carcinogens formed during processing (e.g., polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and nitrosamines), among others. This review concludes by recommending a thorough risk assessment of plant-based protein foods to ensure wider successful adoption and use of plant-based alternative food and protein products in SSA.
Collapse
Affiliation(s)
- Fredrick O. Ogutu
- Food Technology DivisionKenya Industrial Research and Development InstituteNairobiKenya
| | - Gertrude Okiko
- Food Technology DivisionKenya Industrial Research and Development InstituteNairobiKenya
| | - George Wanjala
- Food Technology DivisionKenya Industrial Research and Development InstituteNairobiKenya
| | - Susan Luvitaa
- Food Technology DivisionKenya Industrial Research and Development InstituteNairobiKenya
| | - Boniphase Oure
- Food Technology DivisionKenya Industrial Research and Development InstituteNairobiKenya
| | | | | |
Collapse
|
3
|
Li T, Ji H, Sun J, Li Y, Xu Y, Ma W, Sun H. Analysis of fungal diversity in processed jujube products and the production of mycotoxins by typical toxigenic Aspergillus spp. Front Microbiol 2025; 16:1499686. [PMID: 40207152 PMCID: PMC11978838 DOI: 10.3389/fmicb.2025.1499686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Processed jujube products are susceptible to contamination by fungi such as Aspergillus spp., which produces mycotoxins that could lead to health problems in consumers. In this study, 58 samples of processed jujube products (including 5 types such as dried jujubes) were collected from different markets in Shihezi (Xinjiang, China). The fungal diversity and the fungi isolated from processed jujube products were systematically analyzed through high-throughput sequencing and molecular biological identification (based on the ITS and/or BenA and CaM regions). In total, the 105 strains of fungi were isolated and identified as belonging to the dominant genera were Aspergillus, Cladosporium, Alternaria, and Penicillium. High-throughput sequencing indicated that Alternaria, Didymella, Cladosporium, and Aspergillus were the dominant fungi in processed jujube products. ELISA showed that A. flavus produced about 19.3862-21.7583 μg/L, 6.5309-11.0411 μg/L, 0-15.4407 μg/L, 0-5.6354 μg/L, and 0-6.0545 μg/L of AFT, AFB1, AFB2, AFM1, and AFM2, respectively. In addition, concentrations of OTA produced by A. niger, A. tubingensis, and A. ochraceus were found to range from 5.2019 to 18.5207 μg/L. Therefore, the separation of Aspergillus with good mycotoxin-producing abilities from processed jujube products poses a latent threat to consumer health.
Collapse
Affiliation(s)
- Tianzhi Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Ji
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jingtao Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yinghao Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yue Xu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyi Ma
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Han Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Fundikira S, Suleiman R, De Saeger S, De Boevre M, Kimanya M. Aflatoxin awareness and preventive agricultural practices are key to adoption of biocontrol among maize smallholder farmers in Tanzania. Mycotoxin Res 2025; 41:179-189. [PMID: 39615021 DOI: 10.1007/s12550-024-00574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 01/24/2025]
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus species that infect staple foods like maize causing threat to public health and economic impacts. The use of atoxigenic Aspergillus species is considered one of the promising technologies to prevent aflatoxin contamination in maize. Tanzania approved the use of aflatoxin biocontrol (Aflasafe®) in 2018 and introduced it to eight districts. Adoption and effectiveness of this technology depend on many factors including application of pre- and post-harvest practices. There is scant information on awareness of biocontrol and factors which influence the adoption and effectiveness of this technology. A cross-sectional study was conducted in Tanzania to assess awareness and identify factors influencing adoption of the technology. Data was collected from 334 smallholder farmers in Kiteto and Chemba districts and analyzed using SPSS version 20; p-values < 0.05 using a two-tailed test were considered statistically significant. Results indicated 95.4% are not aware and that only 2.7% of the farmers had used biocontrol technology. The use of biocontrol was significantly associated with high income level (p = 0.001) and exposure to print media (p = 0.03) and radio (p = 0.008). The use of hybrid seed (p = 0.01), grazing (p = 0.017), and rotation of crops on yearly basis (p = 0.024) were also significantly associated with the use of biocontrol. Income limits the use of biocontrol, requiring government subsidies for Aflasafe and a premium market for aflatoxin-free maize. Aflatoxin awareness and sensitization on adherence to good pre-harvest practices should be emphasized to enhance adoption of the technology.
Collapse
Affiliation(s)
- Sambwe Fundikira
- Department of Food Science and Agro-Processing, Sokoine University of Agriculture, P.O. Box 3006, Morogoro, Tanzania.
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
- College of Veterinary Medicine and Biomedical Sciences, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Rashid Suleiman
- Department of Food Science and Agro-Processing, Sokoine University of Agriculture, P.O. Box 3006, Morogoro, Tanzania
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, South Africa
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Martin Kimanya
- School of Life Sciences and Bio-Engineering, the Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
5
|
Gressel J, Mbogo P, Kanampiu F, Christou P. Maize yields have stagnated in sub-Sahara Africa: a possible transgenic solution to weed, pathogen and insect constraints. PEST MANAGEMENT SCIENCE 2024; 80:4156-4162. [PMID: 38843468 DOI: 10.1002/ps.8224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 08/10/2024]
Abstract
Despite major breeding efforts by various national and international agencies, yields for the ~40 million hectares of maize, the major food crop in sub-Saharan Africa, have stagnated at <2 tons/ha/year for the past decade, one-third the global average. Breeders have succeeded in breeding increased yield with a modicum of tolerance to some single-weed or pathogen stresses. There has been minimal adoption of these varieties because introgressing polygenic yield and tolerance traits into locally adapted material is very challenging. Multiple traits to deal with pests (weeds, pathogens, and insects) are needed for farmer acceptance, because African fields typically encounter multiple pest constraints. Also, maize has no inherent resistance to some of these pest constraints, rendering them intractable to traditional breeding. The proposed solution is to simultaneously engineer multiple traits into one genetic locus. The dominantly inherited multi-pest resistance trait single locus can be bred simply into locally adapted, elite high-yielding material, and would be valuable for farmers, vastly increasing maize yields, and allowing for more than regional maize sufficiency. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Paul Christou
- University of Lleida & Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
6
|
Boadu RO, Dankyi E, Apalangya VA, Osei-Safo D. Aflatoxins in maize and groundnuts on markets in Accra and consumers risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:213-222. [PMID: 38778671 DOI: 10.1080/19393210.2024.2351575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
This study presents the results of aflatoxin contamination of maize and groundnuts in major markets in Accra and assesses the population's exposure to aflatoxins. Raw maize and groundnuts from 6 major markets in Accra were sampled and analysed for their aflatoxin content. A total of 92 samples comprising 48 maize and 44 groundnuts were analysed using high-performance liquid chromatography, after extraction with methanol/water and cleanup on an immunoaffinity column. Total aflatoxins were quantified in 98% of the maize samples and 70% of the groundnut samples, with concentrations ranging from 0.60 to 1065 µg/kg and 0.20 to 627 µg/kg, respectively. Exposure assessment showed an estimated daily intake of 0.436 μg/kg bw/day and 0.0632 μg/kg bw/day for maize and groundnut consumption, respectively, suggesting significant health risks for consumers. The high prevalence and concentrations of aflatoxins call for an urgent need for measures to control exposure of the Ghanaian population.
Collapse
Affiliation(s)
| | - Enock Dankyi
- Department of Chemistry, University of Ghana, Accra, Ghana
| | - Vitus A Apalangya
- Department of Food Processing Engineering, University of Ghana, Accra, Ghana
| | | |
Collapse
|
7
|
Maroui MA, Odongo GA, Mundo L, Manara F, Mure F, Fusil F, Jay A, Gheit T, Michailidis TM, Ferrara D, Leoncini L, Murray P, Manet E, Ohlmann T, De Boevre M, De Saeger S, Cosset FL, Lazzi S, Accardi R, Herceg Z, Gruffat H, Khoueiry R. Aflatoxin B1 and Epstein-Barr virus-induced CCL22 expression stimulates B cell infection. Proc Natl Acad Sci U S A 2024; 121:e2314426121. [PMID: 38574017 PMCID: PMC11032484 DOI: 10.1073/pnas.2314426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Grace Akinyi Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Lucia Mundo
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Francesca Manara
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Antonin Jay
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Thanos M. Michailidis
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Domenico Ferrara
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Paul Murray
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
| | - Evelyne Manet
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng2028, South Africa
| | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Rosita Accardi
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Henri Gruffat
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| |
Collapse
|
8
|
Mariri NG, Dikhoba PM, Mongalo NI, Makhafola TJ. GC-ToF-MS Profiling and In Vitro Inhibitory Effects of Selected South African Plants against Important Mycotoxigenic Phytopathogens. Life (Basel) 2023; 13:1660. [PMID: 37629517 PMCID: PMC10455341 DOI: 10.3390/life13081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The harmful effects following the ingestion of mycotoxin-contaminated food include the induction of cancers, mutagenicity, immune suppression, and toxicities that target organs of the digestive, cardiovascular, and central nervous systems. Synthetic fungicides are generally associated with a high toxic residue in food and the development of excessive fungal resistance. This study aimed to determine the antifungal activities against mycotoxigenic fungi of selected South African plant leaves and potentially develop plant-derived bio-fungicides, and, furthermore, to explore the in vitro antioxidant activity and the phytochemical spectra of the compounds of the selected medicinal plant extracts. The extracts were tested for antifungal activity against phytopathogenic strains using a microdilution broth assay. Bauhinia galpinii extracts exhibited the lowest minimum inhibitory concentration (MIC) against C. cladospoides and P. haloterans at 24 h incubation periods. C. caffrum had good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with 50% inhibitory concentration (IC50) values of 0.013 mg/mL while B. galpini had IC50 values of 0.053 against free radicals of 2,2'-azinobis (3-ethylbenzthiazoline-6-suphonic acid (ABTS). The antimycotoxigenic and antioxidant activity exerted by both B. galpinii and C. caffrum may well be attributed to high TPC. In the GC-ToF-MS analysis, all the selected medicinal plants exhibited the presence of Hexadecanoic acid at varying % areas, while both B. galpinii and C. caffum exhibited the presence of lupeol at % area 2.99 and 3.96, respectively. The compounds identified, particularly the ones with higher % area, may well explain the biological activity observed. Although the selected medicinal plants exhibited a notable biological activity, there is a need to explore the safety profiles of these plants, both in vitro and in vivo.
Collapse
Affiliation(s)
- Ntagi Gerald Mariri
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Preachers Madimetja Dikhoba
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Science (CAES), Laboratories, University of South Africa, Private BagX06, Florida 0710, South Africa
| | - Tshepiso Jan Makhafola
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| |
Collapse
|
9
|
Yu S, Zou L, Zhao J, Zhu Y. Individual and Combined Cytotoxic Effects of Co-Occurring Fumonisin Family Mycotoxins on Porcine Intestinal Epithelial Cell. Foods 2023; 12:2555. [PMID: 37444293 PMCID: PMC10340252 DOI: 10.3390/foods12132555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Human health is seriously threatened by mycotoxin contamination, yet health risk assessments are typically based on just one mycotoxin, potentially excluding the additive or competitive interactions between co-occurring mycotoxins. In this investigation, we evaluated the individual or combined toxicological effects of three fumonisin-family B mycotoxins: fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), by using porcine intestinal epithelial cells (IPEC). IPEC cells were exposed to various concentrations (2.5-40 μM) for 48 h, and a cell counting kit (CCK8) was used to determine cell vitality. Firstly, we discovered that they might inhibit cell viability. Additionally, the cytotoxicity of FB1 was significantly greater than that of FB2 and FB3. The results also indicated that the combinations of FB1-FB2, FB2-FB3, and FB1-FB2-FB3 showed synergistically toxicological effects at the ID10-ID50 levels and antagonistic effects at the ID75-ID90 levels. In addition, the FB1-FB3 exposure was also synergistic at the ID10-ID25 level. We also found that myriocin and resveratrol alleviated the cytotoxicity induced by fumonisin in IPEC cells. In all, this study may contribute to the determination of legal limits, the optimization of risk assessment for fumonisins in food and feed, and the development of new methods to alleviate fumonisin toxicity.
Collapse
Affiliation(s)
- Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (L.Z.); (J.Z.); (Y.Z.)
| | | | | | | |
Collapse
|
10
|
An NN, Shang N, Zhao X, Tie XY, Guo WB, Li D, Wang LJ, Wang Y. Occurrence, Regulation, and Emerging Detoxification Techniques of Aflatoxins in Maize: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan-nan An
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Nan Shang
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Xia Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Xiao-yu Tie
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Wen-bo Guo
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
11
|
Mateo EM, Tarazona A, Jiménez M, Mateo F. Lactic Acid Bacteria as Potential Agents for Biocontrol of Aflatoxigenic and Ochratoxigenic Fungi. Toxins (Basel) 2022; 14:807. [PMID: 36422981 PMCID: PMC9699002 DOI: 10.3390/toxins14110807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins (AF) and ochratoxin A (OTA) are fungal metabolites that have carcinogenic, teratogenic, embryotoxic, genotoxic, neurotoxic, and immunosuppressive effects in humans and animals. The increased consumption of plant-based foods and environmental conditions associated with climate change have intensified the risk of mycotoxin intoxication. This study aimed to investigate the abilities of eleven selected LAB strains to reduce/inhibit the growth of Aspergillus flavus, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus welwitschiae, Aspergillus steynii, Aspergillus westerdijkiae, and Penicillium verrucosum and AF and OTA production under different temperature regiments. Data were treated by ANOVA, and machine learning (ML) models able to predict the growth inhibition percentage were built, and their performance was compared. All factors LAB strain, fungal species, and temperature significantly affected fungal growth and mycotoxin production. The fungal growth inhibition range was 0-100%. Overall, the most sensitive fungi to LAB treatments were P. verrucosum and A. steynii, while the least sensitive were A. niger and A. welwitschiae. The LAB strains with the highest antifungal activity were Pediococcus pentosaceus (strains S11sMM and M9MM5b). The reduction range for AF was 19.0% (aflatoxin B1)-60.8% (aflatoxin B2) and for OTA, 7.3-100%, depending on the bacterial and fungal strains and temperatures. The LAB strains with the highest anti-AF activity were the three strains of P. pentosaceus and Leuconostoc mesenteroides ssp. dextranicum (T2MM3), and those with the highest anti-OTA activity were Leuconostoc paracasei ssp. paracasei (3T3R1) and L. mesenteroides ssp. dextranicum (T2MM3). The best ML methods in predicting fungal growth inhibition were multilayer perceptron neural networks, followed by random forest. Due to anti-fungal and anti-mycotoxin capacity, the LABs strains used in this study could be good candidates as biocontrol agents against aflatoxigenic and ochratoxigenic fungi and AFL and OTA accumulation.
Collapse
Affiliation(s)
- Eva María Mateo
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Andrea Tarazona
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Misericordia Jiménez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Fernando Mateo
- Departamento de Ingeniería Electrónica, ETSE, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| |
Collapse
|
12
|
Zhou J, Lv X, Jia J, Din ZU, Cai S, He J, Xie F, Cai J. Nanomaterials-Based Electrochemiluminescence Biosensors for Food Analysis: Recent Developments and Future Directions. BIOSENSORS 2022; 12:1046. [PMID: 36421164 PMCID: PMC9688497 DOI: 10.3390/bios12111046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/11/2023]
Abstract
Developing robust and sensitive food safety detection methods is important for human health. Electrochemiluminescence (ECL) is a powerful analytical technique for complete separation of input source (electricity) and output signal (light), thereby significantly reducing background ECL signal. ECL biosensors have attracted considerable attention owing to their high sensitivity and wide dynamic range in food safety detection. In this review, we introduce the principles of ECL biosensors and common ECL luminophores, as well as the latest applications of ECL biosensors in food analysis. Further, novel nanomaterial assembly strategies have been progressively incorporated into the design of ECL biosensors, and by demonstrating some representative works, we summarize the development status of ECL biosensors in detection of mycotoxins, heavy metal ions, antibiotics, pesticide residues, foodborne pathogens, and other illegal additives. Finally, the current challenges faced by ECL biosensors are outlined and the future directions for advancing ECL research are presented.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuqin Lv
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jilai Jia
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zia-ud Din
- Department of Agriculture, University of Swabi, Swabi 23561, Pakistan
| | - Shiqi Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
13
|
Cheng S, Feng X, Liu G, Zhao N, Liu J, Zhang Z, Yang N, Zhou L, Pang M, Tang B, Dong J, Zhao B, Liu Y. Natural Occurrence of Mycotoxins in Maize in North China. Toxins (Basel) 2022; 14:toxins14080521. [PMID: 36006182 PMCID: PMC9414867 DOI: 10.3390/toxins14080521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Mycotoxins seriously threaten the quality of maize seriously around the world. A total of 426 samples of maize kernel from northeast and northwest China were analyzed in this study. Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was performed to analyze the mycotoxin contamination of maize samples. The results showed that it was contaminated by mycotoxins in maize. The average contamination levels of fumonisins, deoxynivalenol, aflatoxins, zearalenone, ochratoxin A, T-2 and HT-2 were 937, 431, 22, 27, 2 and 12 μg/kg, respectively. Concentration of mycotoxins in some samples exceeded their limit, but most were still at safe levels. The contamination level of FBs and DON were most significative. The proportion of mycotoxins exceeding the maximum limit standard was in the following order: 8.0%, 8.0%, 7.0%, 1.6%, 1.4% and 0.0%. The contamination of mycotoxins in maize varies from region to region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jingao Dong
- Correspondence: (J.D.); (B.Z.); (Y.L.); Tel.: +86-312-752-8166 (J.D.); +86-312-752-8567 (B.Z.); +86-312-752-8173 (Y.L.)
| | - Bin Zhao
- Correspondence: (J.D.); (B.Z.); (Y.L.); Tel.: +86-312-752-8166 (J.D.); +86-312-752-8567 (B.Z.); +86-312-752-8173 (Y.L.)
| | - Yingchao Liu
- Correspondence: (J.D.); (B.Z.); (Y.L.); Tel.: +86-312-752-8166 (J.D.); +86-312-752-8567 (B.Z.); +86-312-752-8173 (Y.L.)
| |
Collapse
|
14
|
Deng J, Jiang H, Chen Q. Determination of aflatoxin B 1 (AFB 1) in maize based on a portable Raman spectroscopy system and multivariate analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121148. [PMID: 35306308 DOI: 10.1016/j.saa.2022.121148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1) is the most widely distributed, most toxic, and most harmful, and it is widely present in moldy grains. This study proposes a new method for quantitative and rapid determination of the AFB1 content in maize based on Raman spectroscopy. The Raman spectra of maize samples with different mildew degrees were collected by a portable laser Raman spectroscopy system. Three different spectral selection methods, which were bootstrapping soft shrinkage (BOSS), variable combination population analysis (VCPA) and competitive adaptive reweighted sampling (CARS), were applied to optimize the characteristic wavelength variables of the pretreated Raman spectra. The support vector machine (SVM) detection models based on different optimized characteristic wavelength variables were established, and the results of each detection model were compared. The results obtained showed that the performance of the SVM models established by optimized features was significantly better than the performance of the SVM model built by full-spectrum data. Among them, the SVM model based on the characteristic wavelength variables optimized by the CARS method had the best performance, and its root mean square error of prediction (RMSEP) was 3.5377 μg∙kg-1, the determination coefficient of prediction (RP2) was 0.9715, and the relative prediction deviation (RPD) was 5.8258. The overall results reveal that the rapid quantitative detection of the AFB1 in maize by Raman spectroscopy has a promising application prospect. In addition, the implementation of the characteristic wavelength optimization of Raman spectra in the model calibration process can effectively improve the detection accuracy of chemometric models.
Collapse
Affiliation(s)
- Jihong Deng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
15
|
Ganime Aygün E, Tümentemur G. Effects of stem cells and amniotic fluid on uterus and ovaries on a rat model with abdominal adhesions: a controlled study. J Turk Ger Gynecol Assoc 2022; 23:154-166. [PMID: 35781797 PMCID: PMC9450920 DOI: 10.4274/jtgga.galenos.2022.2022-1-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: This study aimed to compare the effects of human umbilical cord mesenchymal stem cells (hUCMSCs), amniotic fluid (AF), and a combination of both on the uterus and ovaries in a rat model of abdominal adhesions. Material and Methods: This study was designed as a controlled study. Four groups, each consisting of six rats, were randomly formed. One group was designated as the control (CNT). hUCMSCs - applied (hUCSC), AF-applied (AMN), and a combination of both (hUCSC + AMN) were the experimental groups. All rats were given intraperitoneal talc powder to create adhesions. After 21 days, animals in experimental groups were further treated with hUCMSC, AF or a combination of these. Results: There was a statistically significant difference in primordial follicle count, endometrial gland number, and endometrial blood vessel count (p<0.05). AMN provided the best results in the endometrial vessel and primordial follicle count. The average endometrial gland count in AMN and hUCSC + AMN was similarly higher than CNT and hUCSC alone. Conclusion: There were significantly higher for counts for endometrial glands, endometrial blood vessels, and primordial follicles in the hUCSC, AMN and hUCSC + AMN groups compared to controls. Animals in the AMN group had the best result for endometrial vessel and highest primordial follicle count.
Collapse
Affiliation(s)
- Elif Ganime Aygün
- Clinic of Obstetrics and Gynaecology, Acıbadem Mehmet Ali Aydinlar University, Atakent Hospital, İstanbul, Turkey
| | - Gamze Tümentemur
- Department of Anatomy, Acıbadem Mehmet Ali Aydinlar University, Vocational School of Health Services, İstanbul, Turkey
| |
Collapse
|
16
|
Zhang J, Xu Y, Hu T, Sun C, Wu W. Experimental Study on the Status of Maize Mycotoxin Production in Farmers' Grain Storage Silos in Northeastern China. Toxins (Basel) 2021; 13:741. [PMID: 34822525 PMCID: PMC8625731 DOI: 10.3390/toxins13110741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The scientific rationality of farmers' grain storage technology and equipment is crucial for the biosecurity of grain in the main grain-producing areas represented by Northeast China. In this paper, four farmer grain storage mock silos of different widths were used as a means to track an experimental cycle of grain storage. The absolute water potential of corn in all four silos at the beginning of the experiment was greater than the absolute water potential of air, prompting moisture migration from the grain interior to the air and down to about 14%. Moisture was influenced by wind direction, and moisture decreased faster with better ventilation on both sides of the grain silos. Therefore, grain silo width has a significant effect on the drying effect under naturally ventilated conditions of maize ears. This research focused on the determination and assessment of mycotoxin contamination under farmers' storage grain conditions and analyzed the effect of silo structure on the distribution of mycotoxin contamination. When the width was too large, areas of high mycotoxin infection existed in the middle of the grain silo, and ventilation and tipping could be used to reduce the risk of toxin production. This study proved that reasonable farmer grain storage techniques and devices in Northeast China can effectively protect grain from mycotoxin contamination.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
| | - Yan Xu
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
| | - Taogang Hu
- Department of Grain Science and Technology, Jilin Business and Technology College, Changchun 130507, China;
| | - Changpo Sun
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
- Standards and Quality Center of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, China
| | - Wenfu Wu
- Department of Agricultural Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; (J.Z.); (Y.X.)
- Department of Grain Science and Technology, Jilin Business and Technology College, Changchun 130507, China;
| |
Collapse
|
17
|
Wang C, Xu F, Baker R, Pinjari A, Bruckers L, Zhao Y, Stevenson A, Zhang G. Fungi carried over in jute bags – a smoking gun for aflatoxin contamination in the food supply chain. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
India is the largest jute and fifth largest maize producing country in the world. In India maize is commonly stored and transported in jute bags which are used multiple times. Aflatoxin contamination of maize is a major issue in India. This study evaluated the potential impact of re-using jute bags on the risk of aflatoxin contamination of maize in the food supply chain. A total of 121 jute bags were collected in India; 95 had been used for maize and 26 bags were new. Significantly higher numbers of viable aflatoxigenic fungi were counted from re-used bags (27.8 times) (P<0.05), than the number from new bags. There was no significant difference between aflatoxin concentration found in the re-used jute bags and the new jute bags (P>0.05). Further analysis revealed that the aflatoxigenic fungal population (3.0 times) and aflatoxin concentration (1.2 times) were significantly higher in jute bags that had been used for maize with higher aflatoxin contamination (14-188.4 μg/kg total aflatoxins) than in those that had been used for maize with lower contamination (0.8-5.4 μg/kg total aflatoxins) (P<0.05). The significant positive correlation (P<0.05) between the aflatoxigenic fungal population of used jute bags and aflatoxin contamination of their packed maize indicated there is a risk of cross-contamination in the supply chain introduced by re-using jute bags. This is the first study to systematically reveal the potential impact of re-using jute bags on the fungal population and aflatoxin contamination risk. The application of readily applied treatments to re-used jute bags would help to minimise the aflatoxin contamination.
Collapse
Affiliation(s)
- C. Wang
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - F. Xu
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - R.C. Baker
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - A. Pinjari
- Mars International India Pvt, Ltd, Avusulonipally village, Wargal Mandal, Siddipet Distt. Telangana State, 502279, India
| | - L. Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, University Hasselt, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Y. Zhao
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - A. Stevenson
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - G. Zhang
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| |
Collapse
|
18
|
Shen C, Wei M, Sheng Y. A bibliometric analysis of food safety governance research from 1999 to 2019. Food Sci Nutr 2021; 9:2316-2334. [PMID: 33841848 PMCID: PMC8020926 DOI: 10.1002/fsn3.2220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Although the number of food governance-related studies increased rapidly in the recent decade, the current academic research still lacked systematic integration of food safety governance. To clarify the development trends of research therein, this study summarized research articles concerning food safety governance by the Web of Science Core Collection. An in-depth bibliometric analysis was then conducted through CiteSpace to summarize the current characters and hot spots of food safety governance research, and predicted future research trends. Results showed that food safety governance was multidisciplinary, which included environmental science, food science, economics, and agriculture. The United States had the largest number of relevant articles, and Wageningen University was the most influential scientific research institution. Among all the journals in this field, Food Policy ranked the first in publication volume and co-citation frequency. The development of food safety governance research was divided into three processes, namely the separate formulation of the standards for public and private sectors, the joint implementation of these standards, and co-governance by multiple sectors. The most popular research hot spots in this field were food safety policy integration and public-private partnership of food safety governance. Lower- and middle-income countries focused more on food supply and food system design, and regrettably not on food safety. Higher-income countries cared more about food safety and food nutrition. Besides, researchers of higher-income countries also concentrated on consumers' voices in participating in food safety governance. Food safety co-governance, online food governance, the willingness to buy safe food, and food safety governance under pandemics were considered as future research directions.
Collapse
Affiliation(s)
- Cong Shen
- School of ManagementHenan University of TechnologyZhengzhouChina
| | - Mingxia Wei
- School of ManagementHenan University of TechnologyZhengzhouChina
| | - Yilong Sheng
- School of ManagementWuhan Institute of TechnologyWuhanChina
| |
Collapse
|
19
|
Exposure to aflatoxins and fumonisins and linear growth of children in rural Ethiopia: a longitudinal study. Public Health Nutr 2021; 24:3662-3673. [PMID: 33517942 PMCID: PMC8369457 DOI: 10.1017/s1368980021000422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: We hypothesise that exposure to aflatoxins and fumonisins, measured in serum, alters protein synthesis, reducing serum protein and insulin-like growth factor 1 (IGF-1), increasing inflammation and infection, leading to child’s linear growth failure. Design: Children 6–35 months, stratified by baseline stunting, were subsampled from an intervention trial on quality protein maize consumption and evaluated at two time-points. Setting: Blood samples and anthropometric data were collected in the pre-harvest (August–September 2015) and post-harvest (February 2016) seasons in rural Ethiopia. Participants: 102 children (50 stunted and 52 non-stunted). Results: Proportions of children exposed to aflatoxin G1, aflatoxin G2 and aflatoxin M1 were higher in the pre-harvest (8, 33 and 7, respectively) compared to post-harvest season (4, 28 and 4, respectively). The proportion of children exposed to any aflatoxin was higher in the pre-harvest than post-harvest season (51 % v. 41 %). Fumonisin exposure ranged from 0 % to 11 %. In joint statistical tests, aflatoxin exposure was associated with serum biomarkers of inflammation (C-reactive protein, α-1-glycoprotein) and protein status (transthyretin, lysine, tryptophan), IGF-1 and linear growth (all P < 0·01). However, exposure to specific aflatoxins was not significantly associated with any biomarkers or outcomes (all P > 0·05). Conclusions: Aflatoxin exposure among rural Ethiopian children was high, with large variation between seasons and individual aflatoxins. Fumonisin exposure was low. There was no clear association between aflatoxin exposure and protein status, inflammation or linear growth. A larger study may be needed to examine the potential biological interactions, and the assessment of aflatoxins in food is needed to determine sources of high exposure.
Collapse
|
20
|
Zinedine A, Ben Salah-Abbes J, Abbès S, Tantaoui-Elaraki A. Aflatoxin M1 in Africa: Exposure Assessment, Regulations, and Prevention Strategies - A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:73-108. [PMID: 34611756 DOI: 10.1007/398_2021_73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aflatoxins are the most harmful mycotoxins causing health problems to human and animal. Many acute aflatoxin outbreaks have been reported in Africa, especially in Kenya and Tanzania. When ingested, aflatoxin B1 is converted by hydroxylation in the liver into aflatoxin M1, which is excreted in milk of dairy females and in urine of exposed populations. This review aims to highlight the AFM1 studies carried out in African regions (North Africa, East Africa, West Africa, Central Africa, and Southern Africa), particularly AFM1 occurrence in milk and dairy products, and in human biological fluids (breast milk, serum, and urine) of the populations exposed. Strategies for AFM1 detoxification will be considered, as well as AFM1 regulations as compared to the legislation adopted worldwide and the assessment of AFM1 exposure of some African populations. Egypt, Kenya, and Nigeria have the highest number of investigations on AFM1 in the continent. Indeed, some reports showed that 100% of the samples analyzed exceeded the EU regulations (50 ng/kg), especially in Zimbabwe, Nigeria, Sudan, and Egypt. Furthermore, AFM1 levels up to 8,000, 6,999, 6,900, and 2040 ng/kg have been reported in milk from Egypt, Kenya, Sudan, and Nigeria, respectively. Data on AFM1 occurrence in human biological fluids have also shown that exposure of African populations is mainly due to milk intake and breastfeeding, with 85-100% of children being exposed to high levels. Food fermentation in Africa has been tried for AFM1 detoxification strategies. Few African countries have set regulations for AFM1 in milk and derivatives, generally similar to those of the Codex alimentarius, the US or the EU standards.
Collapse
Affiliation(s)
- Abdellah Zinedine
- Faculty of Sciences, BIOMARE Laboratory, Applied Microbiology and Biotechnologies, Chouaib Doukkali University, El Jadida, Morocco.
| | - Jalila Ben Salah-Abbes
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorization, University of Monastir, Monastir, Tunisia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorization, University of Monastir, Monastir, Tunisia
- Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| | - Abdelrhafour Tantaoui-Elaraki
- Retired, Department of Food Sciences, Hassan II Institute of Agronomy and Veterinary Medicine - Rabat, Rabat-Instituts, Témara, Morocco
| |
Collapse
|
21
|
Massomo SM. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Xiang F, Zhao Q, Zhao K, Pei H, Tao F. The Efficacy of Composite Essential Oils against Aflatoxigenic Fungus Aspergillus flavus in Maize. Toxins (Basel) 2020; 12:E562. [PMID: 32882838 PMCID: PMC7551089 DOI: 10.3390/toxins12090562] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
The efficacy of eleven essential oils (EOs) against Aspergillus flavus NRRL 3357 was investigated. The highest antifungal activity against this aflatoxigenic fungus was exhibited by cinnamon, oregano and lemongrass, which showed low minimum inhibitory concentration (MIC) values under vapor conditions. Interactions of the three EOs were evaluated by the fractional inhibition concentration index (FICI), and the composite essential oils (CEO) showed synergistic inhibitory activities. Chemical analysis of the composite essential oils of cinnamon, oregano, and lemongrass (COL-CEO) revealed that (Z)-citral (33.44%), (E)-citral (32.88%) and carvacrol (19.84%) were the dominant components, followed by limonene (4.29%) and cinnamaldehyde (3.76%). COL-CEO not only inhibited fungal growth but also decreased aflatoxin B1 production by A. flavus. Downregulation of the relative expression of aflatoxin genes in the aflatoxin biosynthetic pathway by COL-CEO revealed its anti-aflatoxigenic mechanism. COL-CEO could also affect the colonization of A. flavus on maize grains. Therefore, COL-CEO may be considered as a potential natural antifungal agent, which could be used for the storage of maize and other grains.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (F.X.); (Q.Z.); (K.Z.); (H.P.)
| |
Collapse
|
23
|
Genetic Basis of Maize Resistance to Multiple Insect Pests: Integrated Genome-Wide Comparative Mapping and Candidate Gene Prioritization. Genes (Basel) 2020; 11:genes11060689. [PMID: 32599710 PMCID: PMC7349181 DOI: 10.3390/genes11060689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023] Open
Abstract
Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology's single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10-30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.
Collapse
|
24
|
Kebede H, Liu X, Jin J, Xing F. Current status of major mycotoxins contamination in food and feed in Africa. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106975] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Chavez RA, Cheng X, Stasiewicz MJ. A Review of the Methodology of Analyzing Aflatoxin and Fumonisin in Single Corn Kernels and the Potential Impacts of These Methods on Food Security. Foods 2020; 9:E297. [PMID: 32150943 PMCID: PMC7143881 DOI: 10.3390/foods9030297] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 11/25/2022] Open
Abstract
Current detection methods for contamination of aflatoxin and fumonisin used in the corn industry are based on bulk level. However, literature demonstrates that contamination of these mycotoxins is highly skewed and bulk samples do not always represent accurately the overall contamination in a batch of corn. Single kernel analysis can provide an insightful level of analysis of the contamination of aflatoxin and fumonisin, as well as suggest a possible remediation to the skewness present in bulk detection. Current literature describes analytical methods capable of detecting aflatoxin and fumonisin at a single kernel level, such as liquid chromatography, fluorescence imaging, and reflectance imaging. These methods could provide tools to classify mycotoxin contaminated kernels and study potential co-occurrence of aflatoxin and fumonisin. Analysis at a single kernel level could provide a solution to the skewness present in mycotoxin contamination detection and offer improved remediation methods through sorting that could impact food security and management of food waste.
Collapse
Affiliation(s)
| | | | - Matthew J. Stasiewicz
- Department of Food Science and Human Nutrition. University of Illinois at Urbana-Champaign. 905 S Goodwin Ave., Urbana, IL 61801, USA; (R.A.C.); (X.C.)
| |
Collapse
|
26
|
Wang Y, Zhao C, Zhang D, Zhao M, Peng M, Guo P, Cui Z. Microbial Degradation of Zearalenone by a Novel Microbial Consortium, NZDC-6, and Its Application on Contaminated Corncob by Semisolid Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1634-1644. [PMID: 31961687 DOI: 10.1021/acs.jafc.9b05343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel microbial consortium (NZDC-6) was screened and characterized to detoxify the estrogenic mycotoxin zearalenone (ZEA), which commonly contaminates maize and is a major threat to food and health security. We found NZDC-6 to be thermophilic and highly effective, with a 90.3% ZEA degradation ratio at an optimum temperature of 60 °C. NZDC-6 was also effective at degrading the more estrogenic ZEA cognates, α-zearalenol (α-ZAL) and β-zearalenol (β-ZAL), with >90% degradation ratios. To evaluate a practical application, ZEA-contaminated corncobs were treated with NZDC-6 via semisolid fermentation. Measurements of physicochemical parameters and 16S microbial diversity and redundancy analysis (RDA) indicated that ZEA removal was most efficient at a low corncob solid content (< 5%), as a high solid content overwhelmed the microbial metabolic load, leading to increased dissolved oxygen and lowered pH. Our results demonstrate that the control of environmental variables is crucial for effective ZEA microbial removal in practical applications.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Chunxia Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Dongdong Zhang
- Institute of Marine Biology, Ocean College , Zhejiang University , Zhoushan , Zhejiang 316021, China
| | - Mingming Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Maomin Peng
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research , Hubei Academy of Agricultural Sciences , Wuhan 430064 , China
| | - Zongjun Cui
- College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
27
|
Wang Y, Wang G, Dai Y, Wang Y, Lee YW, Shi J, Xu J. Biodegradation of Deoxynivalenol by a Novel Microbial Consortium. Front Microbiol 2020; 10:2964. [PMID: 31969870 PMCID: PMC6960266 DOI: 10.3389/fmicb.2019.02964] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Deoxynivalenol (DON), a common mycotoxin of type B trichothecene, is produced mainly by several Fusarium species. DON causes great losses in farming and poses severe safety risks to human and animal health. Thus, DON contamination in cereals and DON toxicity are of worldwide concern. In this study, we screened the bacterial consortium C20, which efficiently degraded almost 70 μg ml−1 DON within 5 days. The bacterial consortium also had the ability to degrade 15-acetyl-DON, 3-acetyl-DON, and T-2 toxin. The bacterial consortium C20 was able to degrade DON under a wide range of pH and temperature conditions. The optimal temperature and pH for DON degradation were 30°C and pH 8.0, respectively. The bacterial consortium C20 comprised of different bacterial genera, and several strains were found to significantly increase when cultured in Mineral Medium with 100 μg ml−1 DON based on the analysis of the sequences of the hypervariable V3-V4 region of the 16S rRNA gene. 3-keto-DON was confirmed as a degradation product of DON by liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS) and nuclear magnetic resonance (NMR) analyses. The results indicated that the bacterial consortium C20 is a potential candidate for the biodegradation of DON in a safe and environmentally friendly manner.
Collapse
Affiliation(s)
- Yanxia Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yu Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1403-1436. [PMID: 33336904 DOI: 10.1111/1541-4337.12481] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022]
Abstract
Fungal contamination of food and animal feed, especially by mycotoxigenic fungi, is not only a global food quality concern for food manufacturers, but it also poses serious health concerns because of the production of a variety of mycotoxins, some of which present considerable food safety challenges. In today's mega-scale food and feed productions, which involve a number of processing steps and the use of a variety of ingredients, fungal contamination is regarded as unavoidable, even good manufacturing practices are followed. Chemical preservatives, to some extent, are successful in retarding microbial growth and achieving considerably longer shelf-life. However, the increasing demand for clean label products requires manufacturers to find natural alternatives to replace chemically derived ingredients to guarantee the clean label. Lactic acid bacteria (LAB), with the status generally recognized as safe (GRAS), are apprehended as an apt choice to be used as natural preservatives in food and animal feed to control fungal growth and subsequent mycotoxin production. LAB species produce a vast spectrum of antifungal metabolites to inhibit fungal growth; and also have the capacity to adsorb, degrade, or detoxify fungal mycotoxins including ochratoxins, aflatoxins, and Fusarium toxins. The potential of many LAB species to circumvent spoilage associated with fungi has been exploited in a variety of human food and animal feed stuff. This review provides the most recent updates on the ability of LAB to serve as antifungal and anti-mycotoxigenic agents. In addition, some recent trends of the use of LAB as biopreservative agents against fungal growth and mycotoxin production are highlighted.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| |
Collapse
|
29
|
Silva AS, Brites C, Pouca AV, Barbosa J, Freitas A. UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Curr Res Food Sci 2019; 1:1-7. [PMID: 32914099 PMCID: PMC7473352 DOI: 10.1016/j.crfs.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC–ToF-MS) method has been developed for determination of nine mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZEA), toxin T2 (T2) and fumonisins (FB1 and FB2) in maize. The method included a two-step extraction with acetonitrile 80% (v/v). After optimization, the analytical method was validated. The different concentrations tested take in account the Maximum Levels (ML) for maize (Commission Regulation EC no. 1881/2006) and good results for repeatability (%RSDr ≤ 15.4%), reproducibility (%RSDR ≤ 15.9%) and recovery (77.8–110.4%, except for AFG2 at 2 μg/kg which presented a recovery of 73.4%) were achieved. These met the performance criteria imposed by Commission Regulation (EC) no. 401/2006. The method was applied to twenty-two samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins, but the levels do not exceed those imposed by European legislation. A UHPLC–ToF-MS method was developed for determination of nine mycotoxins in maize. Validation of the method was performed taking in account the EU maximum legal limits for maize. Good results for repeatability, reproducibility and recovery were achieved. The method was applied to 22 samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
- Corresponding author. National Institute for Agricultural and Veterinary Research, Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal.
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- GREEN-IT, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Vila Pouca
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Jorge Barbosa
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
30
|
Gómez JV, Tarazona A, Mateo F, Jiménez M, Mateo EM. Potential impact of engineered silver nanoparticles in the control of aflatoxins, ochratoxin A and the main aflatoxigenic and ochratoxigenic species affecting foods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Carballo D, Tolosa J, Ferrer E, Berrada H. Dietary exposure assessment to mycotoxins through total diet studies. A review. Food Chem Toxicol 2019; 128:8-20. [DOI: 10.1016/j.fct.2019.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023]
|
32
|
Lulamba TE, Stafford RA, Njobeh PB. A sub-Saharan African perspective on mycotoxins in beer - a review. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tshikala Eddie Lulamba
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, CnrSiemert & Beit Streets, 2028 Johannesburg - New Doornfontein Johannesburg South Africa
| | - Robert A. Stafford
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, CnrSiemert & Beit Streets, 2028 Johannesburg - New Doornfontein Johannesburg South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science; University of Johannesburg; Doornfontein Campus, CnrSiemert & Beit Streets, 2028 Johannesburg - New Doornfontein Johannesburg South Africa
| |
Collapse
|
33
|
Li J, Yan H, Tan X, Lu Z, Han H. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal Chem 2019; 91:3885-3892. [DOI: 10.1021/acs.analchem.8b04622] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Heng Yan
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Hubei Provincial Institute for Food Supervision and Test, Wuhan, Hubei 430075, People’s Republic of China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, People’s Republic of China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| |
Collapse
|