1
|
Ju Y, Liu H, Niu S, Kang L, Ma L, Li A, Zhao Y, Yuan Y, Zhao D. Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition. Food Chem 2025; 467:142286. [PMID: 39642418 DOI: 10.1016/j.foodchem.2024.142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five cultivars in two regions between 2020 and 2022, which was based on 67 indices, including nutrients, bioactives, elements and stable isotopes. Twelve variables (fructose, δ2H, glucose, tartaric acid, Mo, Na, Sr, His, Phe, Mn, Lys and Rb) were selected to refine models that could distinguish Lycium barbarum origin without being impacted by cultivar or year. The model of training set and testing set samples had discrimination rates of 100 % and 94.71 % to 98.28 %, suggesting an optimized multi-variate analysis strategy using OPLS-DA model could correctly predict the origin of blind Lycium barbarum samples. This study provides new evidence for constructing a reliable traceability model for the geographical origins of Lycium barbarum.
Collapse
Affiliation(s)
- Yanjun Ju
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Hejiang Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Shuhui Niu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Lu Kang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Lei Ma
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - An Li
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuwei Yuan
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Duoyong Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Xinjiang Key Laboratory of Agro-products Quality & Safety, Laboratory of Quality & Safety Risk Assessment for Agro-Products(Urumqi), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China.
| |
Collapse
|
2
|
Giannioti Z, Roncone A, Bontempo L. Unveiling diversity in amino acid stable isotope profiles for classifying rice varieties, refining types and cultivation systems. Food Res Int 2025; 201:115567. [PMID: 39849716 DOI: 10.1016/j.foodres.2024.115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Isotope Ratio Mass Spectrometry (IRMS) is a promising tool in organic authentication cases. Premium-priced Italian rice varieties (Carnaroli, Arborio, Baldo) are used in cuisines worldwide for their unique qualitative properties. Organic authentication of rice by morphological assessment is unfeasible, while its market availability at different refining stages (brown, white) further increases the data variability. In this study, bulk and compound-specific (CS) - IRMS analysis of nine rice amino acids (AAs), by elemental analyser (EA) - IRMS and gas chromatography (GC) - combustion (C) - IRMS, respectively, were applied in order to explore their organic authentication potential in cases involving different rice varieties and refining types. The individual and interactive effects of the different variables were assessed on the δ13CAAs, δ15NAAs, δ13Cbulk and δ15Nbulk, and the sample classification was attempted by linear discriminant analysis (LDA) and decision tree analysis (DTA). Organic authentication of brown rice was achieved by CS-IRMS. Generic rice was differentiated from all Italian organic and conventional varieties (δ15Nleucine < 2.5 ‰). The δ13C values of glutamic acid, glycine, phenylalanine and proline, significantly contributed to the complete LDA separation of conventional Arborio, conventional Carnaroli and organic Carnaroli samples. This study showcases the interplay between refining type, variety and cultivation, which should be considered in cases of organic authentication by IRMS methods.
Collapse
Affiliation(s)
- Zoe Giannioti
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy; Centre for Agriculture, Food and Environment (C3A), University of Trento and Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Alberto Roncone
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy.
| |
Collapse
|
3
|
Levanič T, Cigić B, Germ M, Polišenská I, Vaculová K, Pravst I, Kocjan Ačko D, Kreft I. Differences in Ratio of Carbon Stable Isotopes among Barley Grain Milling Fractions with Various Concentrations of Beta-Glucans. Molecules 2023; 28:5738. [PMID: 37570708 PMCID: PMC10420649 DOI: 10.3390/molecules28155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The grains of three barley varieties were milled and sieved to obtain respective milling fractions with a content of beta-glucans (b-G) from 1.4 to 10.7%. The enriched fraction obtained by the extraction and precipitation contained 24.7% of b-G. The differences between the ratio of stable C carbon isotopes were established. Milling fractions with coarse particles had more beta-glucans and a more negative ratio of δ13C isotope in comparison to the respective intact barley grain. However, the enriched fraction had a less negative isotope ratio. So, it is not expected that the deviation from the stable isotope ratio of grain in milling fractions is the result of the content of b-G, but it depends on other barley grain constituents. In different parts of barley grain, there are substances with different stable isotope ratios, and by milling and sieving, they are assorted to the same milling fraction with most of the b-G. The method for determining the ratio of a stable carbon isotope in diverse barley grain fractions, applied in this investigation, is potentially opening the possibility for an additional method of screening the concentration of bioactive constituents in barley grain.
Collapse
Affiliation(s)
- Tom Levanič
- Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia;
| | - Blaž Cigić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.C.); (M.G.); (D.K.A.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.C.); (M.G.); (D.K.A.)
| | - Ivana Polišenská
- Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kroměříž, Czech Republic; (I.P.); (K.V.)
| | - Kateřina Vaculová
- Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kroměříž, Czech Republic; (I.P.); (K.V.)
| | - Igor Pravst
- Nutrition Institute, Koprska ulica 98, SI-1000 Ljubljana, Slovenia;
| | - Darja Kocjan Ačko
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (B.C.); (M.G.); (D.K.A.)
| | - Ivan Kreft
- Nutrition Institute, Koprska ulica 98, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
4
|
Wadood SA, Jiang Y, Nie J, Li C, Rogers KM, Liu H, Zhang Y, Zhang W, Yuan Y. Effects of Light Shading, Fertilization, and Cultivar Type on the Stable Isotope Distribution of Hybrid Rice. Foods 2023; 12:foods12091832. [PMID: 37174370 PMCID: PMC10178473 DOI: 10.3390/foods12091832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The effect of fertilizer supply and light intensity on the distribution of elemental contents (%C and %N) and light stable isotopes (C, N, H, and O) in different rice fractions (rice husk, brown rice, and polished rice) of two hybrid rice cultivars (maintainer lines You-1B and Zhong-9B) were investigated. Significant variations were observed for δ13C (-31.3 to -28.3‱), δ15N (2.4 to 2.7‱), δ2H (-125.7 to -84.7‱), and δ18O (15.1‱ to 23.7‱) values in different rice fractions among different cultivars. Fertilizer treatments showed a strong association with %N, δ15N, δ2H, and δ18O values while it did not impart any significant variation for the %C and δ13C values. Light intensity levels also showed a significant influence on the isotopic values of different rice fractions. The δ13C values showed a positive correlation with irradiance. The δ2H and δ15N values decreased with an increase in the irradiance. The light intensity levels did not show any significant change for δ18O values in rice fractions. Multivariate ANOVA showed a significant interaction effect of different factors (light intensity, fertilizer concentration, and rice variety) on the isotopic composition of rice fractions. It is concluded that all environmental and cultivation factors mentioned above significantly influenced the isotopic values and should be considered when addressing the authenticity and origin of rice. Furthermore, care should be taken when selecting rice fractions for traceability and authenticity studies since isotopic signatures vary considerably among different rice fractions.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Department of Food Science, University of Home Economics Lahore, Lahore 54700, Pakistan
| | - Yunzhu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Chunlin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Karyne M Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yongzhi Zhang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| | - Weixing Zhang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021, China
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
| |
Collapse
|
5
|
Song T, Xia Z, Liu C, Nie J, Zhou Y, Wadood SA, Zhang Y, Li C, Rogers KM, Yuan Y. Model Optimization for Geographical Discrimination of Lentinula edodes based Stable Isotopes and Multi-elements in China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Wadood SA, Nie J, Li C, Rogers KM, Zhang Y, Yuan Y. Geographical origin classification of peanuts and processed fractions using stable isotopes. Food Chem X 2022; 16:100456. [PMID: 36203953 PMCID: PMC9529559 DOI: 10.1016/j.fochx.2022.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/27/2022] [Accepted: 09/25/2022] [Indexed: 11/01/2022] Open
Abstract
This study investigates the use of stable isotopes (C, N, H, and O) to characterize the geographical origin of peanuts along with different peanut fractions including whole peanut kernel, peanut shell, delipidized peanuts and peanut oil. Peanut samples were procured in 2017 from three distinctive growing regions (Shandong, Jilin, and Jiangsu) in China. Peanut processing significantly influenced the δ 13C, δ 2H, and δ 18O values of different peanut fractions, whereas δ 15N values were consistent across all fractions and unaffected by peanut processing. Geographical differences of peanut kernels and associated peanut fractions showed a maximum variance for δ 15N and δ 18O values which indicated their strong potential to discriminate origin. Different geographical classification models (SVM, LDA, and k-NN) were tested for peanut kernels and associated peanut fractions. LDA achieved the highest classification percentage, both on the training and validation sets. Delipidized peanuts had the best classification rate compared to the other fractions.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Department of Nutrition & Health Promotion, University of Home Economics Lahore, Pakistan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| | - Jing Nie
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| | - Chunlin Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| | - Karyne M. Rogers
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
- National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Yongzhi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| | - Yuwei Yuan
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310021, China
| |
Collapse
|
7
|
Liu HY, Wadood SA, Xia Y, Liu Y, Guo H, Guo BL, Gan RY. Wheat authentication:An overview on different techniques and chemometric methods. Crit Rev Food Sci Nutr 2021; 63:33-56. [PMID: 34196234 DOI: 10.1080/10408398.2021.1942783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops and is consumed as a staple food around the globe. Wheat authentication has become a crucial issue over the last decades. Recently, many techniques have been applied in wheat authentication including the authentication of wheat geographical origin, wheat variety, organic wheat, and wheat flour from other cereals. This paper collected related literature in the last ten years, and attempted to highlight the recent studies on the discrimination and authentication of wheat using different determination techniques and chemometric methods. The stable isotope analysis and elemental profile of wheat are promising tools to obtain information regarding the origin, and variety, and to differentiate organic from conventional farming of wheat. Image analysis, genetic parameters, and omics analysis can provide solutions for wheat variety, organic wheat, and wheat adulteration. Vibrational spectroscopy analyses, such as NIR, FTIR, and HIS, in combination with multivariate data analysis methods, such as PCA, LDA, and PLS-DA, show great potential in wheat authenticity and offer many advantages such as user-friendly, cost-effective, time-saving, and environment friendly. In conclusion, analytical techniques combining with appropriate multivariate analysis are very effective to discriminate geographical origin, cultivar classification, and adulterant detection of wheat.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Syed Abdul Wadood
- Department of Food and Nutrition, University of Home Economics, Lahore, Pakistan
| | - Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Huan Guo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Bo-Li Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science & Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu, China
| |
Collapse
|
8
|
Gatzert X, Chun KP, Boner M, Hermanowski R, Mäder R, Breuer L, Gattinger A, Orlowski N. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:281-300. [PMID: 33855926 DOI: 10.1080/10256016.2021.1905635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
As demand for regional and organically produced foodstuff has increased in Europe, the need has arisen to verify the products' origin and production method. For food authenticity tracking (production method and origin), we examined 286 samples of wheat (Triticum aestivum), potatoes (Solanum tuberosum), and apples (Malus domestica) from different regions in Germany for their stable isotope compositions of oxygen, hydrogen, carbon, nitrogen and sulphur. Single-variate authentication methods were used. Suitable isotope tracers to determine wheat's regional origin were δ18O and δ34S. δ13C helped to distinguish between organic and conventional wheat samples. For the separation of the production regions of potatoes, several isotope tracers were suitable (e.g. δ18O, δ2H, δ15N, δ13C and δ34S isotopes in potato protein), but only protein δ15N was suitable to differentiate between organic and conventional potato samples. For the apple samples, 2H and 18O isotopes helped to identify production regions, but no significant statistical differences could be found between organically and conventionally farmed apples. For food authenticity tracking, our study showed the need to take the various isotopes into account. There is an urgent need for a broad reference database if isotope measurements are to become a main tool for determining product's origin.
Collapse
Affiliation(s)
- Xenia Gatzert
- Research Institute of Organic Agriculture (FiBL), Frankfurt am Main, Germany
- Institute for Plant Production and Plant Breeding II - Organic Farming with Focus on Sustainable Soil Use, Justus Liebig University Giessen, Giessen, Germany
| | - Kwok P Chun
- Department of Geography, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Robert Hermanowski
- Research Institute of Organic Agriculture (FiBL), Frankfurt am Main, Germany
| | - Rolf Mäder
- Research Institute of Organic Agriculture (FiBL), Frankfurt am Main, Germany
| | - Lutz Breuer
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Gattinger
- Institute for Plant Production and Plant Breeding II - Organic Farming with Focus on Sustainable Soil Use, Justus Liebig University Giessen, Giessen, Germany
| | - Natalie Orlowski
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
- Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104295] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Wadood SA, Boli G, Xiaowen Z, Raza A, Yimin W. Geographical discrimination of Chinese winter wheat using volatile compound analysis by HS-SPME/GC-MS coupled with multivariate statistical analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4453. [PMID: 31652388 DOI: 10.1002/jms.4453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 05/22/2023]
Abstract
This study aimed to develop a potential analytical method to discriminate the Chinese winter wheat according to geographical origin and cultivars. A total of 90 wheat samples of 10 different wheat cultivars among three regions were examined by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (GC-MS). The peak areas of 32 main volatile compounds were selected and subjected to statistical analysis, which revealed significant differences among different regions and cultivars. Multivariate analysis of variance showed a significant influence of regions, wheat genotypes, and their interaction on the volatile composition of wheat. Principal component analysis of the aromatic profile showed better visualization for wheat geographical origins. Finally, a classification model based on the linear discriminant analysis was successfully constructed for the discrimination of regions and cultivars with the correct classification percentages of 90 and 100%, respectively.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- Institute of Food Science and Technology, Key Laboratory of Agro-Products Processing, CAAS, Ministry of Agriculture and Rural, Beijing, China
| | - Guo Boli
- Institute of Food Science and Technology, Key Laboratory of Agro-Products Processing, CAAS, Ministry of Agriculture and Rural, Beijing, China
| | - Zhang Xiaowen
- Institute of Food Science and Technology, Key Laboratory of Agro-Products Processing, CAAS, Ministry of Agriculture and Rural, Beijing, China
| | - Ali Raza
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing, China
| | - Wei Yimin
- Institute of Food Science and Technology, Key Laboratory of Agro-Products Processing, CAAS, Ministry of Agriculture and Rural, Beijing, China
| |
Collapse
|
11
|
Peng CY, Zhang YL, Song W, Lv YN, Xu Q, Zheng P, Zhang ZZ, Wan XC, Hou RY, Cai HM. Using stable isotope signatures to delineate the geographic point-of-origin of Keemun black tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2596-2601. [PMID: 30411367 DOI: 10.1002/jsfa.9475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Confirmation of food labeling that claims production in a small geographic region is critical to traceability, quality control and brand protection. In the current study, isotope ratio mass spectrometry (IRMS) was used to generate profiles of δ13 C and δ15 N to determine if the stable isotope signatures of Keemun black tea differ within the three counties that claim production. Other factors (cultivar type, leaf maturity and manufacturing process) were considered for their potential effects. RESULTS Both cultivar type and leaf maturity have remarkable impact on the δ15 N values of tea leaves, and that the cultivar influenced the δ13 C values. Keemun black tea from Qimen county could be easily discriminated from samples from Dongzhi and Guichi counties based on δ15 N signatures. The k-NN model was cross-validated with an accuracy of 91.6%. Environmental factors and/or genotype seem to be the major reasons for δ15 N differences in Keemun black tea from the selected regions. CONCLUSION This article provides a potential effective method to delineate the geographic point-of-origin of Keemun black tea based on δ15 N signatures. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuan-Yi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
| | - Yan-Ling Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
| | - Wei Song
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
- Anhui Entry-Exit Inspection and Quarantine Bureau, Hefei, People's Republic of China
| | - Ya-Ning Lv
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
- Anhui Entry-Exit Inspection and Quarantine Bureau, Hefei, People's Republic of China
| | - Qian Xu
- Sunriver Keemun Black Tea Co., Ltd., Huangshan, People's Republic of China
| | - Ping Zheng
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
- Anhui Entry-Exit Inspection and Quarantine Bureau, Hefei, People's Republic of China
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ru-Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
| | - Hui-Mei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, People's Republic of China
| |
Collapse
|
12
|
Wadood SA, Guo B, Zhang X, Wei Y. Geographical origin discrimination of wheat kernel and white flour using near‐infrared reflectance spectroscopy fingerprinting coupled with chemometrics. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Syed Abdul Wadood
- Institute of Food Science and Technology CAAS/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Boli Guo
- Institute of Food Science and Technology CAAS/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Xiaowen Zhang
- Institute of Food Science and Technology CAAS/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Yimin Wei
- Institute of Food Science and Technology CAAS/Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| |
Collapse
|
13
|
Wadood SA, Boli G, Yimin W. Geographical traceability of wheat and its products using multielement light stable isotopes coupled with chemometrics. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:178-188. [PMID: 30440085 DOI: 10.1002/jms.4312] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
The present study was aimed to investigate the variation of stable isotopic ratios of carbon, nitrogen, hydrogen, and oxygen in wheat kernel along with different processed fractions from three geographical origins across 5 years using isotope ratio mass spectrometry (IRMS). Multiway ANOVA revealed significant differences among region, harvest year, processing, and their interactions for all isotopes. The region contributed the major variability in the δ13 C ‰, δ2 H ‰, δ15 N ‰, and δ18 O‰ values of wheat. Variation of δ13 C ‰, δ15 N ‰, and δ18 O ‰ between wheat whole kernel and its products (break, reduction, noodles, and cooked noodles) were ˂0.7‰, and no significant difference was observed, suggesting the reliability of these isotope fingerprints in geographical traceability of wheat-processed fractions and foods. A significant influence of wheat processing was observed for δ2 H values. By applying linear discriminant analysis (LDA) to the whole dataset, the generated model correctly classified over 91% of the samples according to the geographical origin. The application of these parameters will assist in the development of an analytical control procedure that can be utilized to control the mislabeling regarding geographical origin of wheat kernel and its products.
Collapse
Affiliation(s)
- Syed Abdul Wadood
- Institute of Food Science and Technology, CAAS/ key laboratory of Argo-Products Processing, Ministry of Agriculture and Rural Affair, Beijing, China
| | - Guo Boli
- Institute of Food Science and Technology, CAAS/ key laboratory of Argo-Products Processing, Ministry of Agriculture and Rural Affair, Beijing, China
| | - Wei Yimin
- Institute of Food Science and Technology, CAAS/ key laboratory of Argo-Products Processing, Ministry of Agriculture and Rural Affair, Beijing, China
| |
Collapse
|