1
|
Tang W, Zhang L, Chen Q, Han M, Chen C, Liu W. Determination of monophenolase activity based on backpropagation neural network analysis of three-dimensional fluorescence spectroscopy. J Biotechnol 2023; 365:11-19. [PMID: 36775069 DOI: 10.1016/j.jbiotec.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Tyrosinase is pivotal for melanin formation. Measuring monophenolase activity is of great importance for both fundamental research and industrial applications. For the first time, a backpropagation (BP) artificial neural network with three-dimensional fluorescence spectroscopy was applied for the real-time determination of tyrosinase monophenolase activity. Principal component analysis (PCA) was utilized for the dimension reduction of three-dimensional fluorescence data. The four principal components served as inputs for the neural network. Network parameters were optimized using a genetic algorithm (GA). BP learning algorithm was applied to train the network model to determine tyrosine levels in a binary mixture containing tyrosine and L-DOPA without any chemical separation. The time course of tyrosine consumption by monophenolase was determined to calculate the initial velocity of the enzymatic reaction. The limit of detection of the monophenolase assay was 0.0615 U·mL-1. This combined strategy of PCA, GAs, and BP artificial neural networks for three-dimensional fluorescence spectroscopy was efficient for the real-time and in-situ determination of monophenolase activity in a cascade reaction.
Collapse
Affiliation(s)
- Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Guo Z, Zhang L, Chen Q, Han M, Liu W. Monophenolase assay using excitation-emission matrix fluorescence and ELMAN neural network assisted by whale optimization algorithm. Anal Biochem 2022; 655:114838. [PMID: 35961401 DOI: 10.1016/j.ab.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022]
Abstract
Tyrosinase plays a vital role for melanogenesis and inherently involves both monophenolase activity and diphenolase activity. Monophenolase catalyzes hydroxylation of tyrosine to l-DOPA (L-3,4-dihydroxyphenylalanine). Real-time monophenolase assay method is of outstanding interest for both scientific research and industrial application. A combined strategy of three-dimensional excitation-emission matrix (EEM) fluorescence spectra and artificial neural network was developed to determine monophenolase activity. A quantitation system for tyrosine in presence of l-DOPA was designed based on ELMAN neural network. Principal component analysis (PCA) was conducted to reduce the dimensionality of fluorescence spectra. Four principal components was used as input variables. Whale optimization algorithm (WOA) was implemented to optimize the initial weights and threshold network. Real-time concentration of tyrosine in monophenolase reaction was monitored to calculate the initial velocity for tyrosine consumption. The exclusive monophenolase activity without interference from diphenolase reaction was determined. Limit of detection (LOD) for monophenolase assay is 0.0113 U mL-1. Using the proposed method, enzyme kinetics for monophenolase was investigate. Km was calculated as 14.16 μM. Inhibitor for monophenolase was screened by using model molecule kojic acid with IC50 of 3.49 μM. The assay method exhibited a promising prospect to characterize the kinetics and inhibitor of monophenolase.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Zhang L, Shang Q, Zhao Y, Ran Z, Chen C, Tang W, Liu W. Real-time and simultaneous assay of monophenolase and diphenolase activity in tyrosinase catalyzed cascade reactions by combination of three-way calibration and excitation-emission matrix fluorescence. Anal Bioanal Chem 2022; 414:2439-2452. [PMID: 35099585 DOI: 10.1007/s00216-022-03884-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
A real-time assay for multiple enzyme activities in cascade reactions is required for research on metabolism and bioengineering. Tyrosinase has the bifunctional activity of monophenolase and diphenolase. A combined strategy of three-way calibration with excitation-emission matrix (EEM) fluorescence was developed for real-time and simultaneous determination of monophenolase and diphenolase activity with tyrosine as a substrate. Mathematical separation and second-order advantage were utilized to solve spectral overlapping and uncalibrated interferents during complex dynamic enzymatic processes. Kinetic evolution profiles of EEM were monitored to stack a fusion three-way data array together with static samples. Using a parallel factor analysis (PARAFAC) algorithm, pseudo-univariate calibration curves with limits of detection (LODs) of 3.00 μM and 0.85 μM were established to simultaneously and real-time measure tyrosine and DOPA. Progress curves for tyrosine consumption by monophenolase and DOPA consumption by diphenolase were obtained using the law of mass conservation to calculate the initial velocity. The LODs for monophenolase and diphenolase were 0.0232 U⋅mL-1 and 0.0316 U⋅mL-1. The method achieved real-time and simultaneous assays of multiple enzyme activities in cascade reactions. It showed potential application in the metabolic pathway and biochemical industry.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuanze Zhao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhaoqi Ran
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
4
|
First derivative synchronous fluorometric method to continuously measure monophenolase activity. Enzyme Microb Technol 2021; 150:109884. [PMID: 34489037 DOI: 10.1016/j.enzmictec.2021.109884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
Tyrosinase plays an essential role in melanin biosynthesis and inherently exhibits both monophenolase and diphenolase activity. A first derivative synchronous fluorometric assay was established for directly monitoring monophenolase activity. The zero-crossing point at 322 nm for the first-derivative under synchronous fluorescence with Δλ = 67 nm was utilized to selectively quantify tyrosine in the presence of the reaction product dihydroxyphenylalanine (DOPA). The limit of detection (LOD) for tyrosine was 0.54 μM. The fluorescence intensity of tyrosine was monitored at intervals of 30 s to establish the time course of tyrosine consumption. The LOD for the monophenolase activity was 0.0706 U⋅ mL-1. The Michaelis-Menten e constant and maximum speed were 21.83 μM and 1.12 μM min-1, respectively. Zinc ions competitively inhibited the monophenolase activity, with an IC50 value of 14.36 μM. This assay is easily and rapidly executed and is of great significance for analyzing the kinetics of enzymatic reactions and in fundamental research on monophenolase. This approach has potential applications in the discovery of tyrosinase inhibitors for medicine and cosmetics, as well as in the industrial synthesis of substituted o-diphenol intermediates.
Collapse
|
5
|
Zhang L, Shang Q, Chen C, Tang W, Xu Y, Liu W. Synchronous fluorometric method for continuous assay of monophenolase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119486. [PMID: 33517217 DOI: 10.1016/j.saa.2021.119486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Tyrosinase is the key enzyme for melanogenesis with both monophenolase activity and diphenolase activity, which catalyzes the hydroxylation of tyrosine to L-DOPA and the further oxidation of DOPA, respectively. A continuous assay method was developed to directly monitor the real monophenolase activity using synchronous fluorescence. Complexation with borate to quench the native fluorescence of DOPA could selectively quantified the tyrosine in the binary mixture of tyrosine and DOPA under the wavelength difference Δλ = 67 nm for synchronous fluorescence. The limit of detection (LOD) for tyrosine were estimated to be 0.49 μM. Borate was used as a trapping agent for DOPA to abolish diphenolase activity, while hydroxylamine was used as a reducing agent to restore the catalytic cycle. The time course for consumption of tyrosine was established by monitoring the tyrosine fluorescence intensity at discrete intervals of 30 s. Calibration curve between monophenolase activity and tyrosinase concentration with range from 0.1830 U·mL-1 to 1.7034 U·mL-1, and LOD of 0.0721 U·mL-1. Using the proposed method, the Km and υmax for monophenolase was determined with values of 20.73 μM and 1.10 μM·min-1, respectively. Zinc ion was demonstrated to inhibit the monophenolase activity by competitive inhibition manner with IC50 of 14.36 μM. The assay method displayed a powerful application in kinetics and inhibitor screening for monophenolase.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yidian Xu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Du D, Guo N, Zhang L, Wu Y, Shang Q, Liu W. Real-time fluorometric monitoring of monophenolase activity using a matrix-matched calibration curve. Anal Bioanal Chem 2020; 413:635-647. [PMID: 33159571 DOI: 10.1007/s00216-020-03034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022]
Abstract
Tyrosinase is the key enzyme for the metabolism of tyrosine and inherently comprises both monophenolase activity and diphenolase activity. A real-time fluorometric assay method was established to exclusively monitor the monophenolase activity by eliminating interference from diphenolase reactions through a combination of borate and hydroxylamine. Synthetic matrices comprised of tyrosine and DOPA (L-3,4-dihydroxyphenylalanine) preincubated with tyrosinase with the consistent sum concentration of 70 μM to mimic the monophenolase reaction mixture in borate buffer according to law of mass conservation. A matrix-matched calibration curve for determination of tyrosine was established using the synthetic matrices as standard sample to eliminate spectral interference from DOPA. The limit of detection (LOD) for tyrosine was 0.61 μM. The time course for consumption of tyrosine was established to measure the initial velocity through real-time reading out the tyrosine fluorescence intensity of the reaction mixture in a cuvette in situ. The assay worked in the monophenolase activity range from 0.2839 to 1.7308 U mL-1 with LOD of 0.0851 U mL-1. The proposal sensing system successfully afforded a prospective potential for application in enzyme kinetics and screening of inhibitor. Graphical abstract.
Collapse
Affiliation(s)
- Dong Du
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Nihong Guo
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuting Wu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
7
|
Kinetic Characterization of Tyrosinase-catalyzed Oxidation of Four Polyphenols. Curr Med Sci 2020; 40:239-248. [PMID: 32337685 DOI: 10.1007/s11596-020-2186-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Indexed: 10/24/2022]
Abstract
Phenolic compounds such as chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid and caffeic acid are widely distributed in fruits, vegetables and traditional Chinese medicines with a wide range of biological activities. Tyrosinase plays a critical role in the food industry, but recent studies have proposed unexplored aspects of clinical application. Tyrosinase-catalyzed oxidation of four polyphenols as well as its underlying mechanism remains unclear. In the current work, we investigated the kinetic properties of tyrosinase-catalyzed oxidation of the four polyphenols of interest. To measure the unstable o-quinone products, an analytical method using 3-methyl-2-benzothiazolinone hydrazone (MBTH) was established. The optimal incubation time, buffer pH, temperature and enzyme concentration for the enzyme activity in the presence of each polyphenol of interest were investigated. Under the final optimized conditions, the kinetics and substrate specificity of four polyphenols were examined. Kinetic data showed that tyrosinase had the greatest substrate affnity to chlorogenic acid compared with its isomers and caffeic acid. The catalytic effciency with chlorogenic acid was 8- to 15-fold higher than that with the other 3 polyphenols. Molecular docking study demonstrated that the tight binding of chlorogenic acid at the peripheral site should be the major reason for the specifcity to chlorogenic acid. In light of this, the rational design of high-affnity inhibitors against tyrosinase may focus on the binding of both the Cu site and peripheral site. This study will supply a basis for the selection of phenolic acids in food industry and health care.
Collapse
|
8
|
Guo N, You X, Wu Y, Du D, Zhang L, Shang Q, Liu W. Continuous Fluorometric Method for Determining the Monophenolase Activity of Tyrosinase on L-Tyrosine, through Quenching L-DOPA Fluorescence by Borate. Anal Chem 2020; 92:5780-5786. [PMID: 32204589 DOI: 10.1021/acs.analchem.9b05127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosinase is the key enzyme in melanin biosynthesis and inherently involves both monophenolase activity and diphenolase activity. A continuous fluorometric assay method was developed for the first time to directly monitor the real monophenolase activity without the interference of diphenolase reactions through exclusively quenching the native fluorescence of DOPA by borate. Complexation with borate at pH 8.0 allowed for selective quantitation of tyrosine in a binary mixture of tyrosine and DOPA at 335 nm. The time course for consumption of tyrosine was established to measure the initial velocity by recording the tyrosine fluorescence intensity at discrete intervals. The assay worked in the monophenolase activity range from 0.13 to 2.01 U mL-1 with the limit of detection (LOD) of 0.10 U mL-1. The assay method exhibited a promising prospect in application in kinetics of monophenolase and high throughput screening for monophenolase inhibitors.
Collapse
Affiliation(s)
- Nihong Guo
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xue You
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuting Wu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dong Du
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ling Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qi Shang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|