1
|
Silva GS, Nunes Moreira FI, Rodrigues de Albuquerque TM, Abreu TL, Torres de Souza EG, da Silva LR, Jenyffer de Farias Marques AD, de Sousa Galvão M, Dos Santos Lima M, de Souza EL, Madruga MS, Kurozawa LE, Alencar Bezerra TK. Microencapsulated phenolic compounds from organic coffee husk: Impacts on human gut microbiota and in vitro prebiotic potential. Food Res Int 2025; 201:115597. [PMID: 39849730 DOI: 10.1016/j.foodres.2024.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media. The PCs, especially when encapsulated, promoted an increase in the abundance of Lactobacillus spp./Enterococcus spp., Bifidobacterium spp., and Ruminococcus albus/R. flavefaciens, and a reduction in the abundance of Bacteroides spp./Prevotella spp., Clostridium histolyticum, and Eubacterium rectale/Clostridium cocoides. The results suggest that the PCs exhibited prebiotic potential, with their efficacy enhanced by microencapsulation, particularly when WPC was used exclusively as the encapsulating agent.
Collapse
Affiliation(s)
- Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Flávia Izabely Nunes Moreira
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Thaianaly Leite Abreu
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Campus Cuiabá, 78068-600 Cuiabá, Mato Grosso, Brazil
| | - Eike Guilherme Torres de Souza
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Layane Rosa da Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | | | - Mércia de Sousa Galvão
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Federal Institute of Educational Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco 56314-520, Brazil.
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Taliana Kênia Alencar Bezerra
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
2
|
Tie J, Li S, He W, Li Y, Liao F, Xue J, Bai B, Yang J, Wu J. Study of metabolite differences of flue-cured tobacco from Canada (CT157) and Yunnan (Yunyan 87). Heliyon 2024; 10:e32417. [PMID: 38961940 PMCID: PMC11219350 DOI: 10.1016/j.heliyon.2024.e32417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
In order to comprehend the dissimilarities in tobacco quality between Canada and Yunnan, a comparison of the aroma components was conducted using GC-MS and HPLC analysis, coupled with orthogonal partial least squares discriminant analysis (OPLS-DA). The study revealed the detection of a total of 81 aroma components and 22 non-volatile components in both varieties of tobacco leaves. Specifically, there were 102 components of Canada tobacco leaves and 103 components of Yunnan tobacco leaves. Subsequently, a screening was performed on these two types of tobacco leaves, identifying 51 differential components, which accounted for approximately 49.5 % of the overall components detected. Among these, Canada tobacco exhibited a higher concentration of 22 components, comprising roughly 36.4 % of the total, which were primarily composed of semi-volatile organic acids and sesquiterpenes. On the other hand, Yunnan tobacco was characterized by a comparatively higher content of 43 components, constituting approximately 63.6 %, including fatty acid esters, phenols, diterpenes, sugars, and amino acids. Comparatively, Canada tobacco demonstrated elevated levels of fatty acids and sesquiterpenes, while the content of fatty acid esters and diterpenes was relatively lower. These distinctions in aroma components potentially contribute to the varied sensory aroma profiles exhibited by the two types of tobacco.
Collapse
Affiliation(s)
- Jinxin Tie
- Ningbo Tobacco Factory, China Tobacco Zhejiang Industiral Co., Ltd., Ningbo, 315000, China
| | - Shitou Li
- Technology Center, China Tobacco Zhejiang Industiral Co., Ltd., Hangzhou, 310000, China
| | - Wenmiao He
- Technology Center, China Tobacco Zhejiang Industiral Co., Ltd., Hangzhou, 310000, China
| | - Yongsheng Li
- Technology Center, China Tobacco Zhejiang Industiral Co., Ltd., Hangzhou, 310000, China
| | - Fu Liao
- Technology Center, China Tobacco Zhejiang Industiral Co., Ltd., Hangzhou, 310000, China
| | - Jingjing Xue
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Bing Bai
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Jing Yang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Jizhong Wu
- Technology Center, China Tobacco Zhejiang Industiral Co., Ltd., Hangzhou, 310000, China
| |
Collapse
|
3
|
Silva GS, Gomes MHG, de Carvalho LM, Abreu TL, Dos Santos Lima M, Madruga MS, Kurozawa LE, Bezerra TKA. Microencapsulation of organic coffee husk polyphenols: Effects on release, bioaccessibility, and antioxidant capacity of phenolics in a simulated gastrointestinal tract. Food Chem 2024; 434:137435. [PMID: 37713755 DOI: 10.1016/j.foodchem.2023.137435] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Whey protein concentrate (WPC) and maltodextrin were used to microencapsulate polyphenols extract from organic coffee husks by spray drying. The microparticles were characterized and evaluated for their influence on the release, bioaccessibility, and antioxidant capacity of polyphenols in the simulated gastrointestinal tract. WPC as a single encapsulating agent promoted better yield (54.8%) of microparticles. The microparticles showed solubility above 92%, and lower hygroscopicity when encapsulated with maltodextrin alone (7.4%). Smaller diameter (6.78 µm), better encapsulation efficiency (89.1%) and retention of compounds (74.4%) were observed in microparticles with WPC in the composition. Polyphenols were completely released from the microparticles during simulated gastric digestion. The microparticles influenced the bioaccessibility of over 70% of the polyphenols in the intestinal phase. The microparticles showed rapid gastrointestinal release effect but favored the increase of bioaccessibility and preservation of the antioxidant capacity of polyphenols, especially those from the microparticles with WPC compared to the free extract.
Collapse
Affiliation(s)
- Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil.
| | - Leila Moreira de Carvalho
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Thaianaly Leite Abreu
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Marcos Dos Santos Lima
- Federal Institute of Educational Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco 56314-520, Brazil.
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil.
| | - Taliana Kênia Alencar Bezerra
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
4
|
Gottstein V, Lachenmeier DW, Kuballa T, Bunzel M. 1H NMR-based approach to determine the geographical origin and cultivation method of roasted coffee. Food Chem 2024; 433:137278. [PMID: 37688828 DOI: 10.1016/j.foodchem.2023.137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
A comprehensive study of 603 roasted arabica coffee samples using NMR fingerprinting and multivariate data analysis was performed to differentiate coffee samples according to their geographical origin and cultivation method. Both lipophilic and hydrophilic coffee metabolites were recorded using 1H NMR spectroscopy, and principal component analysis followed by linear discriminant analysis (PCA-LDA) was applied. Coffee samples were fist differentiated according to their continents of origin followed by discrimination of coffee samples from Brazil, Ethiopia, and Colombia from coffee samples originating from another continent. Discrimination of coffee samples according to their continent of origin and additional assignment to the countries Brazil and Ethiopia were successful. However, an unambiguous separation of Colombian coffee samples from coffee samples of another continent (other than South America) was not possible. Also, differentiation of organically and conventionally produced coffee samples by using 1H NMR and PCA-LDA was not achieved.
Collapse
Affiliation(s)
- Vera Gottstein
- Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Phytochemistry, Adenauerring 20A, D-76131 Karlsruhe, Germany; Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany.
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany.
| | - Mirko Bunzel
- Karlsruhe Institute of Technology (KIT), Department of Food Chemistry and Phytochemistry, Adenauerring 20A, D-76131 Karlsruhe, Germany.
| |
Collapse
|
5
|
Abreu TL, Estévez M, de Carvalho LM, de Medeiros LL, da Silva Ferreira VC, Salu BR, Oliva MLV, Madruga MS, Bezerra TKA. Unveiling the bioactivity and bioaccessibility of phenolic compounds from organic coffee husks using an in vitro digestion model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1833-1842. [PMID: 37884474 DOI: 10.1002/jsfa.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND The large quantities of by-products generated in the coffee industry are a problem. Studies related to the biological potential of organic coffee husks are still limited. The aim of this work was to investigate the occurrence of phenolic compounds in organic coffee husks and to evaluate their potential as a source of bioactive dietary components. RESULTS To achieve this objective, three extracts were prepared, namely extractable polyphenols (EPs), hydrolyzable non-extractable polyphenols (H-NEPs), and non-extractable polyphenols (NEPs). These extracts were characterized and evaluated for their bioactive properties after simulated gastrointestinal digestion. The results show that the extraction process affected the occurrence of phenols from coffee peels, especially for caffeic acid, gallic acid, and chlorogenic acid. The free and bound polyphenols found in the extracts and digests not only showed antioxidant properties against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals but were also strongly bioavailable and had good anticoagulant potential. CONCLUSION These results highlight the potential health benefits of phytochemicals from coffee husks and open new perspectives for the use of such compounds in dietary supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Thaianaly Leite Abreu
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, Universidad de Extremadura, Cáceres, Spain
| | - Leila Moreira de Carvalho
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Lorena Lucena de Medeiros
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Valquíria Cardoso da Silva Ferreira
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Bruno Ramos Salu
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marta Suely Madruga
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| | - Taliana Kênia Alencar Bezerra
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
6
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
de León-Solis C, Casasola V, Monterroso T. Metabolomics as a tool for geographic origin assessment of roasted and green coffee beans. Heliyon 2023; 9:e21402. [PMID: 38028010 PMCID: PMC10651463 DOI: 10.1016/j.heliyon.2023.e21402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Coffee is widely consumed across the globe. The most sought out varieties are Arabica and Robusta which differ significantly in their aroma and taste. Furthermore, varieties cultivated in different regions are perceived to have distinct characteristics encouraging some producers to adopt the denomination of origin label. These differences arise from variations on metabolite content related to edaphoclimatic conditions and post-harvest management among other factors. Although sensory analysis is still standard for coffee brews, instrumental analysis of the roasted and green beans to assess the quality of the final product has been encouraged. Metabolomic profiling has risen as a promising approach not only for quality purposes but also for geographic origin assignment. Many techniques can be applied for sample analysis: chromatography, mass spectrometry, and NMR have been explored. The data collected is further sorted by multivariate analysis to identify similar characteristics among the samples, reduce dimensionality and/or even propose a model for predictive purposes. This review focuses on the evolution of metabolomic profiling for the geographic origin assessment of roasted and green coffee beans in the last 21 years, the techniques that are usually applied for sample analysis and also the most common approaches for the multivariate analysis of the collected data. The prospect of applying a wide range of analytical techniques is becoming an unbiased approach to determine the origin of different roasted and green coffee beans samples with great correlation. Predictive models worked accurately for the geographic assignment of unknown samples once the variety was known.
Collapse
Affiliation(s)
- Claudia de León-Solis
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Mariano Gálvez University, 3 Avenida 9-00 zona 2, 01002, Interior Finca El Zapote, Ciudad de Guatemala, Guatemala
| | - Victoria Casasola
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Mariano Gálvez University, 3 Avenida 9-00 zona 2, 01002, Interior Finca El Zapote, Ciudad de Guatemala, Guatemala
| | - Tania Monterroso
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas, Mariano Gálvez University, 3 Avenida 9-00 zona 2, 01002, Interior Finca El Zapote, Ciudad de Guatemala, Guatemala
| |
Collapse
|
8
|
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023; 12:2753. [PMID: 37509845 PMCID: PMC10379817 DOI: 10.3390/foods12142753] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In today's era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis.
Collapse
Affiliation(s)
- Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
| | - Mohammed Alaoui Mansouri
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Mohammed Taabouz
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518005, China
- Chemometrics group, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
9
|
Monterisi S, Zuluaga MYA, Porceddu A, Cesco S, Pii Y. The Application of High-Resolution Melting Analysis to trnL (UAA) Intron Allowed a Qualitative Identification of Apple Juice Adulterations. Foods 2023; 12:foods12071437. [PMID: 37048258 PMCID: PMC10093500 DOI: 10.3390/foods12071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Food authenticity plays a pivotal role in the modern age since an increased consumers awareness has led them to pay more attention to food commodities. For this reason, it is important to have reliable and fast techniques able to detect possible adulterations in food, which affect qualitative and economic value. Therefore, the aim of this study was to detect possible adulterations in apple juice from others fruit species (i.e., pear, peach, and kiwi) combining DNA barcoding approach, using trnL (UAA) intron, with high resolution melting analysis (HRMA). A preliminary phylogenetic analysis, using sequences retrieved by the GenBank, confirmed the discriminatory power of trnL (UAA) intron among the four fruit species examined. Moreover, the sequencing of the trnL (UAA) fragments obtained from apple, pear, peach, and kiwi, demonstrated the suitability of an inner shorter sequence, P6 loop, to differentiate the considered species. The HRMA coupled with trnL (UAA) intron allowed discrimination among the four fruits but provided incomplete results for juices. Whereas the HRMA targeting the P6 loop amplicons confirmed the suitability of the technique to qualitatively distinguish fruit juices composed by the combination of apple/pear and apple/peach. However, the impossibility of discriminating apple/kiwi juices from the pure kiwi sample highlighted limitations, most likely related to the DNA extraction process. This hypothesis was further confirmed by analyzing DNA blends obtained by combining nucleic acids extracted from pure matrixes (i.e., apple and kiwi fruits). In this specific case, the application of HRMA allowed both qualitative and quantitative assessment of the samples.
Collapse
|
10
|
An Easy-to-Use and Cheap Analytical Approach Based on NIR and Chemometrics for Tomato and Sweet Pepper Authentication by Non-volatile Profile. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
de Farias Marques ADJ, de Lima Tavares J, de Carvalho LM, Leite Abreu T, Alves Pereira D, Moreira Fernandes Santos M, Suely Madruga M, de Medeiros LL, Kênia Alencar Bezerra T. Oxidative stability of chicken burgers using organic coffee husk extract. Food Chem 2022; 393:133451. [PMID: 35751207 DOI: 10.1016/j.foodchem.2022.133451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
The antioxidant capacity of organic coffee husk extract (Coffee arabica L.) added to chicken burgers was evaluated. Two formulations were prepared: with addition of the extract (100 and 200 ppm CAE/kg), in addition to control formulations without the addition of antioxidant, and with the addition of synthetic antioxidant. The products were characterized by physical and chemical analysis and analyzed for oxidative stability during 45 days of storage under freezing. The addition of extract in the proportion of 200 ppm CAE/kg of hamburger revealed efficacy against lipid oxidation equivalent to treatment with a synthetic antioxidant. As for protein oxidation, there was no pro or antioxidant influence in the treatments. The addition of organic coffee husk extract to chicken hamburgers is thus indicated, being considered as a potential natural additive. In addition, the use of coffee husks helps to minimize the lager amounts of agro-industrial by-products generated by the coffee industry.
Collapse
Affiliation(s)
| | - Jerffeson de Lima Tavares
- Technology Centre, Department of Food Engineering, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Leila Moreira de Carvalho
- Technology Centre, Department of Food Engineering, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Thaianaly Leite Abreu
- Technology Centre, Department of Food Engineering, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Deyse Alves Pereira
- Technology Centre, Department of Food Engineering, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | | | - Marta Suely Madruga
- Technology Centre, Department of Food Engineering, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | - Lorena Lucena de Medeiros
- Technology Centre, Department of Food Engineering, Federal University of Paraiba, Joao Pessoa 58051-900, Brazil
| | | |
Collapse
|
12
|
Quintero M, Santander MJ, Velásquez S, Zapata J, Cala MP. Exploring Chemical Markers Related to the Acceptance and Sensory Profiles of Concentrated Liquid Coffees: An Untargeted Metabolomics Approach. Foods 2022; 11:foods11030473. [PMID: 35159623 PMCID: PMC8834377 DOI: 10.3390/foods11030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we aimed to apply an untargeted LC/QTOF-MS analysis for the identification of compounds that positively and negatively affect the acceptance of coffee beverages from liquid coffee concentrates (CLCs) before and after storage. The metabolomic results were integrated with physicochemical and sensory parameters, such as color, pH, titratable acidity, and oxygen contents, by a bootstrapped version of partial least squares discriminant analysis (PLS-DA) to select and classify the most relevant variables regarding the rejection or acceptance of CLC beverages. The OPLS-DA models for metabolite selection discriminated between the percent sensory acceptance (the Accepted group) and rejection (the Rejected group). Eighty-two molecular features were considered statistically significant. Our data suggest that coffee sample rejection is associated with chlorogenic acid hydrolysis to produce ferulic and quinic acids, consequently generating methoxybenzaldehydes that impact the perceived acidity and aroma. Furthermore, acceptance was correlated with higher global scores and sweetness, as with lactones such as feruloyl-quinolactone, caffeoyl quinolactone, and 4-caffeoyl-1,5-quinolactone, and significant oxygen levels in the headspace.
Collapse
Affiliation(s)
- Mónica Quintero
- Research and Development Center—Colcafé S.A.S., Medellín 050024, Colombia;
- Correspondence: ; Tel.: +57-(604)-2856600
| | - Maria José Santander
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (M.J.S.); (M.P.C.)
| | | | - Julián Zapata
- Instituto de Química, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 110111, Colombia; (M.J.S.); (M.P.C.)
| |
Collapse
|
13
|
de Fátima Bortolato Piccioli A, Ferreira CSR, Dos Santos PDS, Senes CER, Visentainer JV, Santos OO. Direct Methylation for Determination of Fatty Acids in Coffee Samples by GC-FID. J Chromatogr Sci 2022; 60:725-731. [PMID: 34999770 DOI: 10.1093/chromsci/bmab141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/14/2022]
Abstract
The direct methylation method developed in this work for coffee samples allowed the determination of fatty acids using smaller sample amounts (100 mg), lower solvent volumes (5 mL) and shorter experimental run time (~12 min). Hence, the experiments are more economical and collaborate with green chemistry, besides favoring the health of the analyst who handles a smaller amount of solvents in a short period. Design Expert software was employed to determine the optimal concentration of the acid and base (0.7 e 1.75 molL-1) and evaluate the sonication time (5 min for both procedures). The experiments were carried out on different coffee samples in which the fat content ranging from 10.18% to 14.86%. The relative standard deviation values for intraday and interday were 2.78% and 7.8%, respectively, confirming the good precision of the proposed method for fatty acid derivatization.
Collapse
Affiliation(s)
| | | | | | - Carlos Eduardo Rubio Senes
- Department of Chemistry, State University of Maringá (UEM), Colombo Avenue, 5790, 87020-900 Maringá, Paraná, Brasil
| | - Jesuí Vergílio Visentainer
- Department of Chemistry, State University of Maringá (UEM), Colombo Avenue, 5790, 87020-900 Maringá, Paraná, Brasil
| | - Oscar Oliveira Santos
- Department of Chemistry, State University of Maringá (UEM), Colombo Avenue, 5790, 87020-900 Maringá, Paraná, Brasil
| |
Collapse
|
14
|
Kamal GM, Uddin J, Muhsinah AB, Wang X, Noreen A, Sabir A, Musharraf SG. 1H NMR-Based metabolomics and 13C isotopic ratio evaluation to differentiate conventional and organic soy sauce. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette ( Cucurbita pepo). Foods 2021; 10:foods10102475. [PMID: 34681524 PMCID: PMC8536166 DOI: 10.3390/foods10102475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Organic agriculture is considered one of the elements of sustainable food production and consumption, mainly due to its limited impact on the natural environment. At the same time, the quality features of organically produced foods, especially sensory attributes and health promoting values, are important factors determining consumers’ interest, and therefore play a key role in the organic sector’s development. The aim of this study was to investigate the sensory characteristics and concentrations of sugars and selected health-promoting bioactive compounds of organic courgette compared to conventionally grown courgette. In addition, untargeted metabolomic analysis of the courgette fruits was performed. The results of this study did not show a significant effect of the horticultural system (organic vs. conventional) on the concentrations of vitamin C, carotenoids, and chlorophylls in the courgette fruits. However, the fruits from the organic systems were significantly richer in sugars when compared to the conventionally cultivated ones (p = 0.038). Moreover, the organic fruits fertilized with manure contained significantly higher amounts of polyphenols, including gallic acid (p = 0.016), chlorogenic acid (p = 0.012), ferulic acid (p = 0.019), and quercetin-3-O-rutinoside (p = 0.020) compared to the conventional fruits. The untargeted analysis detected features significantly differentiating courgette fruits depending on the cultivar and horticultural system. Some significant differences in sensory values were also identified between fruits representing the two cultivars and coming from the horticultural systems compared in the study. Conventional courgettes were characterized by the most intensive peel color and aquosity, but at the same time were the least hard and firm compared to the fruits from the two organic systems. There was also a trend towards higher overall quality of the organically grown fruits. The presented study shows that the organic and conventional courgette fruits differ in a number of quality features which can influence consumers’ health and purchasing choices.
Collapse
|
16
|
Wang Y, Wang X, Hu G, Hong D, Bai X, Guo T, Zhou H, Li J, Qiu M. Chemical ingredients characterization basing on 1H NMR and SHS-GC/MS in twelve cultivars of Coffea arabica roasted beans. Food Res Int 2021; 147:110544. [PMID: 34399521 DOI: 10.1016/j.foodres.2021.110544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
This work aimed to study the composition differences of roasted beans between 12 coffee cultivars (Catimor 7963, HIBRIDO DE TIMOR, Ruiru 11, Castillo, DTARI 296, DTARI 366, DTARI 392, DTARI 585, SL28, SL34, Catuai-Amarelo and Catuai-Vermelho) from Bourbon-Typica group and Introgressed group under subtropical humid monsoon climate. The water-soluble compounds of roasted coffee beans were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), and the aroma components were analyzed by static headspace gas chromatography mass spectrometry (SHS-GC/MS). In total, 20 water soluble compounds and 43 volatile compounds were identified. Both water-soluble and volatile compounds are rich in acidic substances, and the content varied depending on the cultivars. Furthermore, principal component analysis (PCA) clustered 12 coffee cultivars into four groups. The four different chemically defined clusters of Arabica cultivars produced by chemical differences cannot reflect the traditional grouping based on introgressed, and it is one-sided to judge coffee quality based on lineage. These results give further insight into the quality characteristics of different coffee cultivars, which is of great significance for guiding the adjustment of cultivars' structure and the breeding of new cultivars.
Collapse
Affiliation(s)
- Yanbing Wang
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Xiaoyuan Wang
- College of Agriculture, Guangxi University, Nanning 530004, Guangxi, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Defu Hong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China
| | - Xuehui Bai
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Tieying Guo
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Hua Zhou
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China
| | - Jinhong Li
- Dehong Tropical Agriculture Research Institute of Yunnan, Ruili 678600, Yunnan, PR China.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
17
|
Fiamegos Y, Papoci S, Dumitrascu C, Ghidotti M, Zdiniakova T, Ulberth F, de la Calle Guntiñas MB. Are the elemental fingerprints of organic and conventional food different? ED-XRF as screening technique. J Food Compost Anal 2021; 99:103854. [PMID: 34083873 PMCID: PMC8080890 DOI: 10.1016/j.jfca.2021.103854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Research has been conducted the last years to assess whether organically grown food is chemically different from produce of conventional agriculture and which markers are appropriate to discriminate between them. Most articles focus on one single food commodity, produced under strict controlled organic farming conditions, leaving open the question whether the difference would be seen when applied to the same commodity under different growing conditions. In this work 118 organic and 151 conventional samples of commercially available paprika powder, cinnamon, coffee, tea, chocolate, rice, wheat flour, cane sugar, coconut water, honey and bovine milk were characterised for their elemental composition using energy dispersive X-ray fluorescence. Resulting profiles were analysed using univariate and multivariate statistical techniques. Organic samples of a given commodity clustered together and were separated from their conventional counterparts. Differences in the elemental composition of food, could be used to develop statistical models for verifying the agronomical production system.
Collapse
Affiliation(s)
| | - Sergej Papoci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | | | | | - Franz Ulberth
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | |
Collapse
|
18
|
Rocha Baqueta M, Coqueiro A, Henrique Março P, Mandrone M, Poli F, Valderrama P. Integrated 1H NMR fingerprint with NIR spectroscopy, sensory properties, and quality parameters in a multi-block data analysis using ComDim to evaluate coffee blends. Food Chem 2021; 355:129618. [PMID: 33873120 DOI: 10.1016/j.foodchem.2021.129618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/27/2022]
Abstract
Coffee quality is determined by several factors and, in the chemometric domain, the multi-block data analysis methods are valuable to study multiple information describing the same samples. In this industrial study, the Common Dimension (ComDim) multi-block method was applied to evaluate metabolite fingerprints, near-infrared spectra, sensory properties, and quality parameters of coffee blends of different cup and roasting profiles and to search relationships between these multiple data blocks. Data fusion-based Principal Component Analysis was not effective in exploiting multiple data blocks like ComDim. However, when a multi-block was applied to explore the data sets, it was possible to demonstrate relationships between the methods and techniques investigated and the importance of each block or criterion involved in the industrial quality control of coffee. Coffee blends were distinguished based on their qualities and metabolite composition. Blends with high cup quality and lower roasting degrees were generally differentiated from those with opposite characteristics.
Collapse
Affiliation(s)
- Michel Rocha Baqueta
- Universidade Tecnológica Federal do Paraná, Campus Campo Mourão (UTFPR-CM), Campo Mourão, Paraná, Brazil
| | - Aline Coqueiro
- Universidade Tecnológica Federal do Paraná, Campus Campo Mourão (UTFPR-CM), Campo Mourão, Paraná, Brazil; Universidade Tecnológica Federal do Paraná, Campus Ponta Grossa (UTFPR-PG), Ponta Grossa, Paraná, Brazil
| | - Paulo Henrique Março
- Universidade Tecnológica Federal do Paraná, Campus Campo Mourão (UTFPR-CM), Campo Mourão, Paraná, Brazil
| | - Manuela Mandrone
- University of Bologna, Department of Pharmacy and Biotechnology (FaBiT), Bologna, Italy
| | - Ferruccio Poli
- University of Bologna, Department of Pharmacy and Biotechnology (FaBiT), Bologna, Italy
| | - Patrícia Valderrama
- Universidade Tecnológica Federal do Paraná, Campus Campo Mourão (UTFPR-CM), Campo Mourão, Paraná, Brazil.
| |
Collapse
|
19
|
Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03679-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Abdelwareth A, Zayed A, Farag MA. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chem 2021; 349:129162. [PMID: 33550017 DOI: 10.1016/j.foodchem.2021.129162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Coffee is among the most consumed beverages worldwide. The present study reports on the aroma composition associated with coffee seeds brewing. Aroma of authentic coffee specimens of Coffea arabica and C. robusta alongside with typical products consumed in the Middle East were analyzed using HS-SPME coupled with GC-MS. In addition, multivariate data analysis (MVA) was employed. Results revealed for 102 volatiles with a distinct aroma profile between the different brewing methods. Infusion demonstrated higher esters level, while decoction and maceration were more abundant in sesquiterpenes and terpene alcohols, respectively. Besides, heat-induced products, i.e., 4-vinyl guaiacol was identified as potential roasting index in instant coffee and roasted C. robusta brews. Blending with cardamom further masked the smoky odor of such compounds by its fragrant terpinyl acetate. This study provides the first report on the chemical sensory attributes of Middle Eastern coffee blends and further reveal for the impact of brewing, roasting on its aroma composition.
Collapse
Affiliation(s)
- Amr Abdelwareth
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
21
|
Marcheafave GG, Tormena CD, Mattos LE, Liberatti VR, Ferrari ABS, Rakocevic M, Bruns RE, Scarminio IS, Pauli ED. The main effects of elevated CO 2 and soil-water deficiency on 1H NMR-based metabolic fingerprints of Coffea arabica beans by factorial and mixture design. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142350. [PMID: 33370915 DOI: 10.1016/j.scitotenv.2020.142350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
The metabolic response of Coffea arabica trees in the face of the rising atmospheric concentration of carbon dioxide (CO2) combined with the reduction in soil-water availability is complex due to the various (bio)chemical feedbacks. Modern analytical tools and the experimental advance of agronomic science tend to advance in the understanding of the metabolic complexity of plants. In this work, Coffea arabica trees were grown in a Free-Air Carbon Dioxide Enrichment dispositive under factorial design (22) conditions considering two CO2 levels and two soil-water availabilities. The 1H NMR mixture design-fingerprinting effects of CO2 and soil-water levels on beans were strategically investigated using the principal component analysis (PCA), analysis of variance (ANOVA) - simultaneous component analysis (ASCA) and partial least squares-discriminant analysis (PLS-DA). From the ASCA, the CO2 factor had a significant effect on changing the 1H NMR profile of fingerprints. The soil-water factor and interaction (CO2 × soil-water) were not significant. 1H NMR fingerprints with PCA, ASCA and PLS-DA analysis determined spectral profiles for fatty acids, caffeine, trigonelline and glucose increases in beans from current CO2, while quinic acid/chlorogenic acids, malic acid and kahweol/cafestol increased in coffee beans from elevated CO2. PLS-DA results revealed a good classification performance between the significant effect of the atmospheric CO2 levels on the fingerprints, regardless of the soil-water availabilities. Finally, the PLS-DA model showed good prediction ability, successfully classifying validation data-set of coffee beans collected over the vertical profile of the plants and included several fingerprints of different extracting solvents. The results of this investigation suggest that the association of experimental design, mixture design, PCA, ASCA and PLS-DA can provide accurate information on a series of metabolic changes provoked by climate changes in products of commercial importance, in addition to minimizing the extra work necessary in classic analytical approaches, encouraging the development of similar strategies.
Collapse
Affiliation(s)
- Gustavo Galo Marcheafave
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil.
| | - Cláudia Domiciano Tormena
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | - Lavínia Eduarda Mattos
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | - Vanessa Rocha Liberatti
- Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil
| | | | - Miroslava Rakocevic
- Northern Rio de Janeiro State University - UENF, Plant Physiology Lab, Av. Alberto Lamego 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Embrapa Environment, Rodovia SP 340, Km 127.5, 13820-000 Jaguariúna, SP, Brazil
| | - Roy Edward Bruns
- Institute of Chemistry, State University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| | - Ieda Spacino Scarminio
- Laboratory of Chemometrics in Natural Sciences (LQCN), Department of Chemistry, State University of Londrina, CP 6001, 86051-990 Londrina, PR, Brazil.
| | - Elis Daiane Pauli
- Institute of Chemistry, State University of Campinas, CP 6154, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
22
|
Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2020; 342:128258. [PMID: 33508899 DOI: 10.1016/j.foodchem.2020.128258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Due to a number of unparalleled advantages such as fastness, accuracy, intactness, nuclear magnetic resonance spectroscopy (NMR) has fulfilled a significant role in determining structures and dynamics of various physical, chemical and biological systems in the field of food analysis. This study introduced the principle of NMR, key NMR techniques such as 1H NMR, DOSY, NOESY, HSQC, etc., and the knowledge of NMR applications on the evaluation of complex food system, especially the interactions of food components. The reviewed research work provides sufficient evidence that NMR spectroscopy has been an invaluable tool and will play an increasingly important role in specific technical support for food assessment. In addition, NMR combined with various other technologies could give a complete picture of the mechanism of the performance of functional food compounds, which are vital for human health and influence the intrinsic food properties during processing, storage and transportation at the molecular level.
Collapse
Affiliation(s)
- Ruge Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianya Cao
- Institute of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
| | - Aili Wang
- Key laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Haidian, Beijing 100081, China.
| |
Collapse
|
23
|
Batista Dos Santos Espinelli Junior J, von Brixen Montzel Duarte da Silva G, Branco Bastos R, Badiale Furlong E, Carapelli R. Evaluation of the influence of cultivation on the total magnesium concentration and infusion extractability in commercial arabica coffee. Food Chem 2020; 327:127012. [PMID: 32464457 DOI: 10.1016/j.foodchem.2020.127012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022]
Abstract
Coffee is considered an important source of organic nutrients and minerals, and these resources are strongly affected by agricultural management. Among the minerals, the element Mg is important, which is essential for both plants and humans. In this work, the effects of agricultural management on the absorption and storage of Mg by commercial, ground, roasted Arabica coffee were investigated. For this purpose, some Mg and P fractions were evaluated. It was observed that Mg stored in the grain was concentrated in the inorganic fraction, with an average extraction of 102% and in conventional samples and 119% in organic samples. These results suggest that in these samples Mg is probably largely presented as different inorganic salts. Phytate and organic acid salts are two possibilities discussed in this work that could explain this hypothesis. This can be corroborated by the extraction of Mg in the infusion of hot water.
Collapse
Affiliation(s)
- João Batista Dos Santos Espinelli Junior
- Laboratório de Eletro Espectro Analítica, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, Rio Grande, RS CEP 96203 900, Brazil
| | - Guilherme von Brixen Montzel Duarte da Silva
- Laboratório de Eletro Espectro Analítica, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, Rio Grande, RS CEP 96203 900, Brazil
| | - Renan Branco Bastos
- Laboratório de Eletro Espectro Analítica, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, Rio Grande, RS CEP 96203 900, Brazil
| | - Eliana Badiale Furlong
- Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, Rio Grande, RS CEP 96203 900, Brazil
| | - Rodolfo Carapelli
- Laboratório de Eletro Espectro Analítica, Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Avenida Itália, km 8, Bairro Carreiros, Rio Grande, RS CEP 96203 900, Brazil.
| |
Collapse
|
24
|
Review of Analytical Methods to Detect Adulteration in Coffee. J AOAC Int 2020; 103:295-305. [DOI: 10.1093/jaocint/qsz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Abstract
As one of the most consumed beverages in the world, coffee plays many major socioeconomical roles in various regions. Because of the wide coffee varieties available in the marketplaces, and the substantial price gaps between them (e.g., Arabica versus Robusta; speciality versus commodity coffees), coffees are susceptible to intentional or accidental adulteration. Therefore, there is a sustaining interest from the producers and regulatory agents to develop protocols to detect fraudulent practices. In general, strategies to authenticate coffee are based on targeted chemical profile analyses to determine specific markers of adulterants, or nontargeted analyses based on the “fingerprinting” concept. This paper reviews the literature related to chemometric approaches to discriminate coffees based on nuclear magnetic resonance spectroscopy, chromatography, infrared/Raman spectroscopy, and array sensors/indicators. In terms of chemical profiling, the paper focuses on the detection of diterpenes, homostachydrine, phenolic acids, carbohydrates, fatty acids, triacylglycerols, and deoxyribonucleic acid. Finally, the prospects of coffee authentication are discussed.
Collapse
|
25
|
Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104295] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
A Contribution to the Harmonization of Non-targeted NMR Methods for Data-Driven Food Authenticity Assessment. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01664-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Monteiro PI, Santos JS, Rodionova OY, Pomerantsev A, Chaves ES, Rosso ND, Granato D. Chemometric Authentication of Brazilian Coffees Based on Chemical Profiling. J Food Sci 2019; 84:3099-3108. [PMID: 31645089 DOI: 10.1111/1750-3841.14815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/28/2022]
Abstract
In this work, different chemometric tools were compared to classify n = 26 conventional (CONV) and n = 19 organic (ORG) coffees from the main Brazilian producing regions based on the chemical composition, physicochemical properties, and antioxidant activity. Principal component analysis separated ORG and CONV coffees but the distinction among the producing regions of Brazilian coffee was not possible. Partial least squares discriminant analysis classified all ORG and CONV coffees in the external validation. Similarly, linear discriminant analysis was able to discriminate 100% and 81% of ORG and CONV coffees in the external validation, respectively, in which total phenolic content (TPC), ferric reducing antioxidant activity, and caffeic acid were the main discriminant variables. Overall 100% of samples from Paraná, Minas Gerais, and blended samples were correctly classified, where TPC, flavonoids, inhibition of lipid peroxidation, caffeic acid, pH, and soluble solids were the main discriminant variables. Support vector machines classified 95% ORG and 88% CONV, 100% Coffea arabica, and 88% and 78% coffees produced in São Paulo and Minas Gerais. k-Nearest neighbors was effective in distinguishing 100% CONV, 89% ORG, 100% coffees from São Paulo, and 100% C. arabica coffees. Overall, HPLC data and simple physicochemical parameters allied to chemometrics were effective in authenticating the cultivation system and the botanical origin of Brazilian coffees. PRACTICAL APPLICATION: Coffee adulteration is a serious problem in the food chain as some fraudsters replace coffee powder by other cheaper products. In the case of organic coffee, this scenario is even worse as still there is not a universal method to differentiate conventionally grown coffee from its organic counterpart. In addition, Brazilian coffee is produced in different regions and the commercial value varies. Therefore, we analyzed some physicochemical, chemical, and antioxidant properties of Brazilian coffees from distinct origins and classified the samples using chemometrics. Our approach seems to be interesting for quality control purposes.
Collapse
Affiliation(s)
- Pablo Inocêncio Monteiro
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Oxana Ye Rodionova
- Semenov Inst. of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Branch of Inst. of Natural and Technical Systems, Russian Academy of Sciences, Sochi, 354024, Russia
| | - Alexey Pomerantsev
- Semenov Inst. of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Branch of Inst. of Natural and Technical Systems, Russian Academy of Sciences, Sochi, 354024, Russia
| | - Eduardo Sidinei Chaves
- Dept. of Chemistry, Federal Univ. of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Neiva Deliberali Rosso
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, Ponta Grossa, Paraná, 84030-900, Brazil.,Author Granato is also with Food Processing and Quality, Innovative Food System, Production Systems Unit-Natural Resources Inst. Finland (Luke), Espoo, FI-02150, Finland
| |
Collapse
|
28
|
Consonni R, Cagliani LR. The potentiality of NMR-based metabolomics in food science and food authentication assessment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:558-578. [PMID: 30447115 DOI: 10.1002/mrc.4807] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
In the last years, there was an increasing interest on nuclear magnetic resonance (NMR) spectroscopy, whose applications experienced an exponential growth in several research fields, particularly in food science. NMR was initially developed as the elective technique for structure elucidation of single molecules and nowadays is playing a dominant role in complex mixtures investigations. In the era of the "omics" techniques, NMR was rapidly enrolled as one of the most powerful methods to approach metabolomics studies. Its use in analytical routines, characterized by rapid and reproducible measurements, would provide the identification of a wide range of chemical compounds simultaneously, disclosing sophisticated frauds or addressing the geographical origin, as well as revealing potential markers for other authentication purposes. The great economic value of high-quality or guaranteed foods demands highly detailed characterization to protect both consumers and producers from frauds. The present scenario suggests metabolomics as the privileged approach of modern analytical studies for the next decades. The large potentiality of high-resolution NMR techniques is here presented through specific applications and using different approaches focused on the authentication process of some foods, like tomato paste, saffron, honey, roasted coffee, and balsamic and traditional balsamic vinegar of Modena, with a particular focus on geographical origin characterization, ageing determination, and fraud detection.
Collapse
Affiliation(s)
- Roberto Consonni
- National Research Council, Institute for Macromolecular Studies (ISMAC), Lab. NMR, v. Corti 12, Milan, 20133, Italy
| | - Laura Ruth Cagliani
- National Research Council, Institute for Macromolecular Studies (ISMAC), Lab. NMR, v. Corti 12, Milan, 20133, Italy
| |
Collapse
|
29
|
Consonni R, Bernareggi F, Cagliani L. NMR-based metabolomic approach to differentiate organic and conventional Italian honey. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|