1
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
2
|
Factors That Interfere in the Action of Sanitizers against Ochratoxigenic Fungi Deteriorating Dry-Cured Meat Products. FERMENTATION 2023. [DOI: 10.3390/fermentation9020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study verified the factors affecting the antifungal efficacy of sanitizers against ochratoxin A-producing fungi. The fungi Penicillium nordicum, Penicillium verrucosum, and Aspergillus westerdijkiae were exposed to three sanitizers at three concentrations: peracetic acid (0.3, 0.6, 1%), benzalkonium chloride (0.3, 1.2, 2%), and sodium hypochlorite (0.5, 0.75, 1%) at three exposure times (10, 15, and 20 min), three temperatures (10, 25, and 40 °C), and with the presence of organic matter simulating clean (0.3%) and dirty (3%) environments. All the tested conditions influenced the antifungal action of the tested sanitizers. Peracetic acid and benzalkonium chloride were the most effective sanitizers, and sodium hypochlorite was ineffective according to the parameters evaluated. The amount of organic matter reduced the antifungal ability of all sanitizers. The longer exposure time was more effective for inactivating fungi. The temperature acted differently for benzalkonium chloride, which tended to be favored at low temperatures, than for sodium hypochlorite and peracetic acid, which were more effective at higher temperatures. The knowledge of the parameters that influence the action of sanitizers on spoilage fungi is vital in decision-making related to sanitizing processes in the food industry.
Collapse
|
3
|
Wang G, Li E, Gallo A, Perrone G, Varga E, Ma J, Yang B, Tai B, Xing F. Impact of environmental factors on ochratoxin A: From natural occurrence to control strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120767. [PMID: 36455768 DOI: 10.1016/j.envpol.2022.120767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ochratoxin A (OTA) contamination and the associated issues of food security, food safety and economic loss are widespread throughout the world. The occurrence of OTA depends on ochratoxigenic fungi, foodstuffs and their environment. In this review, natural occurrence and control strategy of OTA, with a focus on the impact of environmental factors, are summarized. First, this manuscript introduces potentially contaminated foodstuffs, including the emerging ones which are not regulated in international legislation. Secondly, it gives an update of native producers based on foodstuffs and OTA biosynthesis. Thirdly, complicated environmental regulation is disassembled into individual factors in order to clarify their regulatory effect and mechanism. Finally, to emphasize control OTA at all stages of foodstuffs from farm to table, strategies used at crop planting, harvest, storage and processing stages are discussed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, 300392, China
| | - Antonia Gallo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, 73100, Italy
| | - Giancarlo Perrone
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, 70126, Italy
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, 1090, Austria
| | - Junning Ma
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bolei Yang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
|
5
|
Vlachou M, Pexara A, Solomakos N, Govaris A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins (Basel) 2022; 14:67. [PMID: 35202095 PMCID: PMC8876995 DOI: 10.3390/toxins14020067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is produced after the growth of several Aspergillus and Penicillium spp. in feeds or foods. OTA has been proved to possess nephrotoxic, hepatotoxic, teratogenic, neurotoxic, genotoxic, carcinogenic and immunotoxic effects in animals and humans. OTA has been classified as possibly carcinogenic to humans (Group 2B) by the IARC in 2016. OTA can be mainly found in animals as a result of indirect transmission from naturally contaminated feed. OTA found in feed can also contaminate pigs and produced pork products. Additionally, the presence of OTA in pork meat products could be derived from the direct growth of OTA-producing fungi or the addition of contaminated materials such as contaminated spices. Studies accomplished in various countries have revealed that pork meat and pork meat products are important sources of chronic dietary exposure to OTA in humans. Various levels of OTA have been found in pork meat from slaughtered pigs in many countries, while OTA levels were particularly high in the blood serum and kidneys of pigs. Pork products made from pig blood or organs such as the kidney or liver have been often found to becontaminated with OTA. The European Union (EU) has established maximum levels (ML) for OTA in a variety of foods since 2006, but not for meat or pork products. However, the establishement of an ML for OTA in pork meat and meat by-products is necessary to protect human health.
Collapse
Affiliation(s)
| | - Andreana Pexara
- Laboratory of Hygiene of Foods of Animal Origin, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.V.); (N.S.); (A.G.)
| | | | | |
Collapse
|
6
|
Álvarez M, Rodríguez A, Núñez F, Silva A, Andrade MJ. In vitro antifungal effects of spices on ochratoxin A production and related gene expression in Penicillium nordicum on a dry-cured fermented sausage medium. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Vinnikova L, Mudryk V, Agunova L. MODERN PRODUCTION TRENDS OF FERMENTED MEAT PRODUCTS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i4.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The work aims to the generalization and analysis of the main problems of production of fermented meat products, which are reflected in scientific publications of the meat processing industry experts. The modern researches of scientists all over the world are aimed to the achievement of bio- and microbiological safety, structure formation, use of new kinds of raw materials, features of color formation, formation of sensory properties, increase of biological value of smoked and uncooked products. The work emphasizes that the quality of finished products and the stability of the technological process depends on the quality of raw materials, the properties of their own microbiota of raw materials and/or introduced starter cultures of microorganisms. The possibility of improving the sanitary condition of raw materials and reducing the impact of pathogenic microorganisms due to the use of ultrasound, hydrostatic high pressure, high-intensity pulsating electric field, cold plasma are described in the work. Also, in addition to physical processing methods, the use of competing microflora, extracts of spicy-aromatic plants, combining salt mixtures, packaging are effective. It is stated that the formation of the structure of the finished product depends on the parameters of the technological process, the activity of exo-endoenzymes and prescription composition. It is shown that the color of fermented meat products and their stability depend on the content of natural pigments and the conditions of their interaction with nitrites under the action of microorganisms with nitrite reductase activity and pH of the environment. The possibility of obtaining a characteristic pink-red color of meat products without the use of nitrites was noted. The results of investigations of the possibility of varying the organoleptic parameters of the finished product by modeling the ingredient composition and fermentation conditions are presented. The possibilities of creation of new types of fermented meat products of functional purpose by the introduction of ω-3 fatty acids, probiotics, macro-, microelements and more are described.
Collapse
|
8
|
Perrone G, Rodriguez A, Magistà D, Magan N. Insights into existing and future fungal and mycotoxin contamination of cured meats. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
|
10
|
Parussolo G, Oliveira MS, Garcia MV, Bernardi AO, Lemos JG, Stefanello A, Mallmann CA, Copetti MV. Ochratoxin A production by Aspergillus westerdijkiae in Italian-type salami. Food Microbiol 2019; 83:134-140. [DOI: 10.1016/j.fm.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023]
|