1
|
Liu Y, Ge W, Sun Y, Dai H, Fan L, Yuan L, Yang Z, Jiao X. Unraveling the ecological interactions between dairy strains Bacillus licheniformis and Bacillus cereus during the dual-species biofilm formation. Food Microbiol 2025; 128:104716. [PMID: 39952760 DOI: 10.1016/j.fm.2024.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 02/17/2025]
Abstract
Bacillus cereus and Bacillus licheniformis are widely presented in dairy products. They can form thick biofilms on surfaces of dairy processing equipment, which may pose serious safety issues and spoilage of final dairy products. However, how ecological interactions between B. cereus and B. licheniformis affect the functions and stability of mixed-species biofilm remains uncovered. In this work, the altered profiles of a dual-species biofilm by dairy-derived B. cereus 121 and B. licheniformis 919 were investigated by RNA-sequencing analysis in combined with phenotype validation (bacterial growth, biofilm-forming capacity, biofilm EPS production, and biofilm structures). The results confirmed that the presence of B. cereus 121 reduced the growth of B. licheniformis 919 planktonic cells, and decreased the biofilm cell numbers of B. licheniformis 919 in the dual-species biofilm when compared to that in its single-species biofilm. The bacterial interaction also reduced the amount of proteins and carbohydrates in the biofilm matrix, and decreased the coverage, average thickness, and total biomass of biofilms. In addition, results from RNA-sequencing analysis showed that the bacterial interaction caused a total of 128 (B. licheniformis 919) and 216 (B. cereus 121) differentially expressed genes (DEGs) during the co-culture of planktonic cells. Functional annotation revealed that the DEGs of B. licheniformis 919 were mainly involved in 10 downregulated pathways including citrate cycle, pyruvate metabolism, nonribosomal peptide structures, glycolysis/gluconeogenesis, quorum sensing, alanine, aspartate and glutamate metabolism, oxidative phosphorylation, beta-Lactam resistance, arginine and proline metabolism, and beta-Alanine metabolism when co-cultured with B. cereus 121. On the other hand, the DEGs from B. cereus 121 were significantly enriched for two downregulated pathways (cysteine and methionine metabolism, and inositol phosphate metabolism) and four upregulated pathways (nitrogen metabolism, glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, and propanoate metabolism). Results of this study facilitate updated knowledge of how bacterial interaction during the biofilm formation shapes the features of the mixed-species biofilm.
Collapse
Affiliation(s)
- Yang Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenwen Ge
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yuxin Sun
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Luyao Fan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
2
|
Yoon JH, Song H, Lee SY. Biofilm formation, slime production, and antibiotic susceptibility properties of the Bacillus cereus group isolated from fresh vegetables in the Republic of Korea. Food Sci Biotechnol 2025; 34:1525-1531. [PMID: 40110395 PMCID: PMC11914702 DOI: 10.1007/s10068-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 03/22/2025] Open
Abstract
This study aimed to characterize the ability of the Bacillus cereus group isolated from conventionally, organically or pesticide-freely grown vegetables to form biofilms with regard to cell surface hydrophobicity (CSH), slime production, and antibiotic susceptibility. Cellular properties (biofilm formation, CSH, and slime production) were measured using an in vitro microplate assay with crystal violet staining, adhesion to hydrocarbons assay, and Congo red broth method, respectively. Consequently, 16, 16, and 16 B. cereus strains were isolated from conventionally, organically, and pesticide-freely grown vegetables, respectively, and 16 (33%) B. cereus isolates were highly biofilm-positive producers. CSH values dramatically varied, ranging from 19 to 74%, among the B. cereus isolates. Additionally, 9, 8, and 8 B. cereus strains isolated from conventionally, organically, and pesticide-freely grown vegetables, respectively, were identified to be slime-positive producers. According to the disc diffusion method, 19 and 41 B. cereus isolates were highly resistant to ampicillin and penicillin, respectively.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 255 Jungang-Ro, Suncheon-Si, Jeollanam-Do 57922 Republic of Korea
| | - Hana Song
- Department of Food and Nutrition, Chung-Ang University, Seodong-Daero, Anseong-Si, Gyeonggi-Do 4726 Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, Seodong-Daero, Anseong-Si, Gyeonggi-Do 4726 Republic of Korea
| |
Collapse
|
3
|
Catania AM, Dalmasso A, Morra P, Costa E, Bottero MT, Di Ciccio PA. Effect of gaseous ozone treatment on cells and biofilm of dairy Bacillus spp. isolates. Front Microbiol 2025; 16:1538456. [PMID: 40165788 PMCID: PMC11955631 DOI: 10.3389/fmicb.2025.1538456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bacillus spp. can produce biofilms and cause recurrent contamination in the food industry. The common clean-in-place (CIP) method is usually employed in sanitizing processing equipment. However, CIP is not always effective in removing biofilms. Ozone represents a promising "green" alternative to control biofilms. In this study, the effect of gaseous ozone (50 ppm) was evaluated in vitro against planktonic and sessile B. cereus and B. subtilis isolates collected from the dairy sector. Planktonic cells were enumerated by plate counts after 10 min, 1 h, and 6 h of ozone treatment. After a short-term (10 min) exposure, a slight reduction in microbial loads (0.66-2.27 ± 0.15 Log10 CFU/mL) was observed for B. cereus strains, whereas a more pronounced reduction (2.90-3.81 ± 0.12 Log10 CFU/mL) was noted in B. subtilis isolates. The microbial load further decreased after 1 h-treatments, around 1.5-3.46 ± 0.11 Log10 CFU/mL for B. cereus strains, and 4.0-5.6 ± 0.11 Log10 CFU/mL for B. subtilis isolates, until complete inactivation of bacterial cells after 6 h of exposure. Moreover, the effect of gaseous ozone treatment (50 ppm, 6 h) was evaluated for its ability to inhibit and eradicate biofilms formed on two common food-contact materials (polystyrene and stainless steel). Sessile B. subtilis cells were the more sensitive to the action of ozone, while a weak effect was highlighted on B. cereus isolates on both surface types. These results were further confirmed by scanning microscopy analysis. The number of cells in the biofilm state was also assessed, showing a not-complete correlation with a decrease in Biofilm Production Indices (BPIs). These findings highlighted the effectiveness of the sanitizing protocol using gaseous ozone in contrasting Bacillus free-living cells, but a not completely counteraction in biofilm formation (inhibition) or eradication of pre-formed biofilm. Thus, the application of ozone could be thought of not alone, but in combination with common sanitization practices to improve their effectiveness.
Collapse
Affiliation(s)
| | | | - Patrizia Morra
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Emanuele Costa
- Department of Earth Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
4
|
Lou X, Zhou Q, Jiang Q, Lin L, Zhu W, Mei X, Xiong J, Gao Y. Inhibitory effect and mechanism of violacein on planktonic growth, spore germination, biofilm formation and toxin production of Bacillus cereus and its application in grass carp preservation. Int J Food Microbiol 2025; 426:110917. [PMID: 39293098 DOI: 10.1016/j.ijfoodmicro.2024.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Bacillus cereus is a ubiquitous foodborne pathogen commonly found in various foods. Its ability to form spores, biofilms and diarrhoeal and/or emetic toxins further exacerbates the risk of food poisoning. Violacein is a tryptophan derivative with excellent antibacterial activity. However, the knowledge on the antibacterial action of violacein against B. cereus was lacking, and thus this study aimed to investigate the antibacterial activity and mechanism. The antibacterial results demonstrated that minimum inhibitory concentration and minimum bactericidal concentration of violacein were 3.125 mg/L and 12.50 mg/L, respectively. Violacein could effectively inhibit planktonic growth, spore germination and biofilm formation of B. cereus (P < 0.001). Meanwhile, violacein significantly downregulated the expression of toxin genes, including nheA (P < 0.05), nheB (P < 0.001), bceT (P < 0.01), cytK (P < 0.001), hblC (P < 0.001) and hblD (P < 0.001). Results of extracellular alkaline phosphatase, nucleotide and protein leakage assays and scanning and transmission electron microscopy observation tests showed violacein destroyed cell walls and membranes of B. cereus. In addition, 6.25 mg/kg of violacein could significantly inhibit B. cereus in grass carp fillets (P < 0.05). These results demonstrate that violacein has great potential as an effective natural antimicrobial preservative to control food contamination and poisoning events caused by B. cereus.
Collapse
Affiliation(s)
- Xiangdi Lou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangsu Coastal Area Institute of Agricultural Science, Yancheng 224002, China
| | - Qiang Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiyue Jiang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liping Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenwu Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Mei
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianhua Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanyan Gao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Jin Z, Zhao S, Li H, Ouyang Q, Tao N. Identification and Validation of Garlic ( Allium sativum) Metabolites as Quorum Sensing Inhibitors of Bacillus cereus Targeting the PlcR Receptor: An In Silico and In Vitro Study. Foodborne Pathog Dis 2024. [PMID: 39435711 DOI: 10.1089/fpd.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
This study aimed to investigate the influence of garlic metabolites on the quorum sensing (QS) of Bacillus cereus, a foodborne pathogen that controls its main virulence factor through QS. The QS signal receptor PlcR of B. cereus was targeted by molecular docking with 82 garlic metabolites to identify the most potent QS inhibitors. Five metabolites, quercetin, kaempferol, luteolin, flavone, and rutin, were selected for further evaluation of their impacts on the growth, toxin production, and virulence of B. cereus in vitro. The expression levels of key QS genes were also measured to verify their anti-QS ability. The results revealed that quercetin reduced enterotoxin production by B. cereus but did not affect the QS process at the transcriptional level; flavone and rutin in garlic interfered with the QS of B. cereus by competing with the autoinducing peptide (AIP) PapR7 for the PlcR binding site, resulting in decreased enterotoxin secretion and hemolysis without altering the bacterial growth. Interestingly, luteolin and kaempferol in garlic acted as AIP analogs and bound to PlcR to stimulate the QS process and virulence. Furthermore, kaempferol, luteolin, flavone, and rutin had distinct or opposite interactions with PapR7 at the Gln237 or Tyr275 residues of PlcR, which determined the suppression or enhancement of the QS process. The findings suggested that flavone and rutin were effective compounds to inhibit the QS process in garlic and could be used as alternative methods to control B. cereus.
Collapse
Affiliation(s)
- Zekun Jin
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Shijie Zhao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Haiyan Li
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Qiuli Ouyang
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, China
| |
Collapse
|
6
|
Xu B, Huang X, Qin H, Lei Y, Zhao S, Liu S, Liu G, Zhao J. Evaluating the Safety of Bacillus cereus GW-01 Obtained from Sheep Rumen Chyme. Microorganisms 2024; 12:1457. [PMID: 39065225 PMCID: PMC11278751 DOI: 10.3390/microorganisms12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bacillus cereus is responsible for 1.4-12% food poisoning outbreaks worldwide. The safety concerns associated with the applications of B. cereus in health and medicine have been controversial due to its dual role as a pathogen for foodborne diseases and a probiotic in humans and animals. In this study, the pathogenicity of B. cereus GW-01 was assessed by comparative genomic, and transcriptome analysis. Phylogenetic analysis based on a single-copy gene showed clustering of the strain GW-01, and 54 B. cereus strains from the NCBI were classified into six major groups (I-VI), which were then associated with the source region and sequence types (STs). Transcriptome results indicated that the expression of most genes related with toxins secretion in GW-01 was downregulated compared to that in the lag phase. Overall, these findings suggest that GW-01 is not directly associated with pathogenic Bacillus cereus and highlight an insightful strategy for assessing the safety of novel B. cereus strains.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Haixiong Qin
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Ying Lei
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610101, China; (B.X.); (X.H.); (H.Q.); (Y.L.); (S.Z.); (S.L.); (G.L.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| |
Collapse
|
7
|
Pereira da Silva M, Fernandes PÉ, de Jesus Pimentel-Filho N, José de Andrade N, Teodoro Alves RB, Eller MR, Luera Peña WE. Modelling adhesion and biofilm formation by Bacillus cereus isolated from dairy products as a function of pH, temperature and time. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Cho HY, Lee JE, Lee JH, Ahn DU, Kim KT, Paik HD. Anti-biofilm effect of egg white ovotransferrin and its hydrolysates against Listeria monocytogenes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Boutonnet C, Lyonnais S, Alpha-Bazin B, Armengaud J, Château A, Duport C. Dynamic Profile of S-Layer Proteins Controls Surface Properties of Emetic Bacillus cereus AH187 Strain. Front Microbiol 2022; 13:937862. [PMID: 35847057 PMCID: PMC9277125 DOI: 10.3389/fmicb.2022.937862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Many prokaryotes are covered by a two-dimensional array of proteinaceous subunits. This surface layers (S-layer) is incompletely characterized for many microorganisms. Here, we studied Bacillus cereus AH187. A genome analysis identified two genes encoding the S-layer proteins SL2 and EA1, which we experimentally confirmed to encode the two protein components of the S-layer covering the surface of B. cereus. Shotgun proteomics analysis indicated that SL2 is the major component of the B. cereus S-layer at the beginning of exponential growth, whereas EA1 becomes more abundant than SL2 during later stages of stationary growth. Microscopy analysis revealed the spatial organization of SL2 and EA1 at the surface of B. cereus to depend on their temporal-dynamics during growth. Our results also show that a mutant strain lacking functional SL2 and EA1 proteins has distinct surface properties compared to its parental strain, in terms of stiffness and hydrophilicity during the stationary growth phase. Surface properties, self-aggregation capacity, and bacterial adhesion were observed to correlate. We conclude that the dynamics of SL2 and EA1 expression is a key determinant of the surface properties of B. cereus AH187, and that the S-layer could contribute to B. cereus survival in starvation conditions.
Collapse
Affiliation(s)
| | | | - Beatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, Avignon, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Avignon, France
- *Correspondence: Catherine Duport,
| |
Collapse
|
10
|
Electrochemical Control of Biofilm Formation and Approaches to Biofilm Removal. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review deals with microbial adhesion to metal-based surfaces and the subsequent biofilm formation, showing that both processes are a serious problem in the food industry, where pathogenic microorganisms released from the biofilm structure may pollute food and related material during their production. Biofilm exhibits an increased resistance toward sanitizers and disinfectants, which complicates the removal or inactivation of microorganisms in these products. In the existing traditional techniques and modern approaches for clean-in-place, electrochemical biofilm control offers promising technology, where surface properties or the reactions taking place on the surface are controlled to delay or prevent cell attachment or to remove microbial cells from the surface. In this overview, biofilm characterization, the classification of bacteria-forming biofilms, the influence of environmental conditions for bacterial attachment to material surfaces, and the evaluation of the role of biofilm morphology are described in detail. Health aspects, biofilm control methods in the food industry, and conventional approaches to biofilm removal are included as well, in order to consider the possibilities and limitations of various electrochemical approaches to biofilm control with respect to potential applications in the food industry.
Collapse
|
11
|
Dai J, Fang L, Wu Y, Liu B, Cheng X, Yao M, Huang L. Effects of exogenous AHLs on the spoilage characteristics of
Pseudomonas koreensis
PS1. J Food Sci 2022; 87:819-832. [DOI: 10.1111/1750-3841.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyue Dai
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Limin Fang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Yan Wu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Baoyu Liu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Xin Cheng
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Mingyin Yao
- College of Engineering, Jiangxi Agricultural University Jiangxi Key Laboratory of Modern Agricultural Equipment Nanchang China
| | - Lin Huang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| |
Collapse
|
12
|
Rita Pereira A, Gomes IB, Simões M. Choline-based ionic liquids for planktonic and biofilm growth control of Bacillus cereus and Pseudomonas fluorescens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Diallyl disulfide, the antibacterial component of garlic essential oil, inhibits the toxicity of Bacillus cereus ATCC 14579 at sub-inhibitory concentrations. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Alonso VPP, de Oliveira Morais J, Kabuki DY. Incidence of Bacillus cereus, Bacillus sporothermodurans and Geobacillus stearothermophilus in ultra-high temperature milk and biofilm formation capacity of isolates. Int J Food Microbiol 2021; 354:109318. [PMID: 34246014 DOI: 10.1016/j.ijfoodmicro.2021.109318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022]
Abstract
The presence of mesophilic and thermophilic spore-forming bacteria in UHT milk, as well as biofilm formation in dairy plants, are concerning. The current study explored the spore-forming bacilli diversity in 100 samples of UHT milk (skimmed and whole). Through this work, a total of 239 isolates from UHT milk samples were obtained. B. cereus s.s. was isolated from 7 samples, B. sporothermodurans from 19 and, G. stearothermophilus from 25 samples. Genes encoding hemolysin (HBL), and non-hemolytic (NHE) enterotoxins were detected in B. cereus s.s. isolates. All isolates of B. cereus s.s. (12) B. sporothermodurans (38), and G. stearothermophilus (47) were selected to verify the ability of biofilm formation in microtiter plates. The results showed all isolates could form biofilms. The OD595 values of biofilm formation varied between 0.14 and 1.04 for B. cereus, 0.20 to 1.87 for B. sporothermodurans, and 0.49 to 2.77 for G. stearothermophilus. The data highlights that the dairy industry needs to reinforce control in the initial quality of the raw material and in CIP cleaning procedures; avoiding biofilm formation and consequently a persistent microbiota in processing plants, which can shelter pathogenic species such as B. cereus s.s.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil.
| | - Jéssica de Oliveira Morais
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
15
|
Zhao L, Duan F, Gong M, Tian X, Guo Y, Jia L, Deng S. (+)-Terpinen-4-ol Inhibits Bacillus cereus Biofilm Formation by Upregulating the Interspecies Quorum Sensing Signals Diketopiperazines and Diffusing Signaling Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3496-3510. [PMID: 33724028 DOI: 10.1021/acs.jafc.0c07826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacillus cereus is a Gram-positive endospore-forming foodborne pathogen that causes lethal food poisoning and significant economic losses, usually through biofilm- and endospore-induced recurrent cross- and postprocessing contamination. Due to the lack of critical inhibitory targets and control strategies, B. cereus biofilm contamination is a problem that urgently needs a solution. In this study, the antibacterial and antibiofilm activities of several natural potential bacterial quorum sensing (QS) interferers, a group of spice-originated monoterpenoids, were screened, and terpinen-4-ol effectively inhibited B. cereus growth and biofilm and spore germination with minimum growth inhibition and 50% biofilm inhibitory concentrations of 8 and 2 μmol/mL, respectively. FESEM/CLSM and phenotypic research illustrated that in addition to a decrease in the number of attached B. cereus cells, (+)-terpinen-4-ol also obviously reduced extracellular matrix synthesis, especially exopolysaccharides, and inhibited the swarming motility and protease activity of B. cereus. (+)-Terpinen-4-ol did not exert a significant effect on AI-2 signals in B. cereus. Accordingly, the B. cereus-produced interspecies QS signals diffusing signal factors (DSFs, C8-C15) and diketopiperazines (DKPs) were detected and identified here, which suppressed B. cereus biofilm formation in a concentration-dependent manner. (+)-Terpinen-4-ol significantly increased the levels of specific DSF and DKP signals in B. cereus and down-regulated the gene expression of some rpfB homologues in transcription level. Moreover, both DKPs and DSFs inhibited swarming motility and protease activity in B. cereus, while just the DSF signals 2-dodecenoic acid and 11-methyl-2-dodecenoic acid inhibited exopolysaccharide synthesis like (+)-terpinen-4-ol. In summary, B. cereus strains were found to produce nine DSF- and six DKP-type QS signaling molecules, which repressed B. cereus biofilm formation. (+)-Terpinen-4-ol was confirmed to be a promising antibacterial and antibiofilm agent against B. cereus upregulating DSFs and DKPs levels, and it could target the critical genes rpfB for DSFs turnover.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Feixia Duan
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Meng Gong
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, P. R. China
| | - Xue Tian
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yan Guo
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, P. R. China
| | - Lirong Jia
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Sha Deng
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
16
|
Sun J, Liu Y, Lin F, Lu Z, Lu Y. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. J Appl Microbiol 2021; 131:1289-1304. [PMID: 33460520 DOI: 10.1111/jam.15007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
AIM In the study, we investigated the regulatory effects of these genes (codY, comA, degU and spo0A) on the biosynthesis of three lipopeptides (bacillomycin D, fengycin and surfactin) in Bacillus amyloliquefaciens. METHODS AND RESULTS The codY, comA, degU and spo0A genes in B. amyloliquefaciens fmbJ were knocked out. The results showed that the productions of bacillomycin D were significantly reduced compared with that of fmbJ. Their deletion induced great changes in the levels of transcripts specifying metabolic pathways, quorum sensing system and substance transport system in fmbJ. Moreover, overexpression of these genes improved the productions of bacillomycin D. In particular, the overexpression of spo0A enhanced bacillomycin D yield up to 648·9 ± 60·9 mg l-1 from 277·3 ± 30·5 mg l-1 . In addition, the yields of surfactin in fmbJΔcodY and fmbJΔdegU were significantly improved, and the regulatory factor CodY had no significant effect on the synthesis of fengycin. CONCLUSIONS These genes positively regulated the expression of bacillomycin D and fengycin synthase genes in strain fmbJ. However, codY and degU negatively regulated surfactin biosynthesis. Moreover, it was found that CodY had a concentration dependence on bacillomycin D synthesis. Spo0A might play a direct regulatory role in the synthesis and secretion of bacillomycin D. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicated that genetic engineering of regulatory genes was an effective strategy to improve the yields of antimicrobial lipopeptides and provided promising strains for industrial production of lipopeptides.
Collapse
Affiliation(s)
- J Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Y Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - F Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Z Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Y Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W. Synergistic interactions of plant essential oils with antimicrobial agents: a new antimicrobial therapy. Crit Rev Food Sci Nutr 2020; 62:1740-1751. [PMID: 33207954 DOI: 10.1080/10408398.2020.1846494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The problem of drug resistance of food borne pathogens is becoming more and more serious. Although traditional antimicrobial agents have good therapeutic effects on a variety of food borne pathogens, more effective antimicrobial agents are still needed to combat the development of drug-resistant food borne pathogens. Plant-based natural essential oils (EOs) are widely used because of their remarkable antimicrobial activity. A potential strategy to address food borne pathogens drug resistance is to use a combination of EOs and antimicrobial agents. Because EOs have multi-target inhibitory effects on microorganisms, combining them with drugs can enhance the activity of the drugs and avoid the emergence of food borne pathogens drug resistance. This paper introduces the main factors affecting the antibacterial activity of EOs and describes methods for evaluating their synergistic antibacterial effects. The possible mechanisms of action of EOs and the synergistic inhibitory effects on pathogens of EOs in combination with antimicrobial agents is described. In summary, the combined use of EOs and existing antimicrobial agents is a promising potential new antibacterial therapy.
Collapse
Affiliation(s)
- Jian Ju
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Chen X, Daliri EBM, Chelliah R, Oh DH. Isolation and Identification of Potentially Pathogenic Microorganisms Associated with Dental Caries in Human Teeth Biofilms. Microorganisms 2020; 8:E1596. [PMID: 33081291 PMCID: PMC7603000 DOI: 10.3390/microorganisms8101596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental caries is attributed to the predominance of cariogenic microorganisms. Cariogenic microorganisms are pathological factors leading to acidification of the oral microenvironment, which is related to the initiation and progression of caries. The accepted cariogenic microorganism is Streptococcus mutans (S. mutans). However, studies have found that caries could occur in the absence of S. mutans. This study aimed to assess the presence of potentially cariogenic microorganisms in human teeth biofilm. The microorganisms were isolated from human mouth and freshly extracted human maxillary incisors extracted for reasons of caries. The isolates were sorted based on their acidogenic and aciduric properties, and the S. mutans was used as the reference strain. Four potentially cariogenic strains were selected. The selected strains were identified as Streptococcus salivarius (S. salivarius), Streptococcus anginosus (S. anginosus), Leuconostoc mesenteroides (L. mesenteroides), and Lactobacillus sakei (L. sakei) through morphological analysis followed by 16S rRNA gene sequence analysis. The cariogenicity of isolates was analyzed. We show, for the first time, an association between L. sakei (present in fermented food) and dental caries. The data provide useful information on the role of lactic acid bacteria from fermented foods and oral commensal streptococci in dental caries.
Collapse
Affiliation(s)
| | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (R.C.)
| |
Collapse
|
19
|
Alonso VPP, Harada AMM, Kabuki DY. Competitive and/or Cooperative Interactions of Listeria monocytogenes With Bacillus cereus in Dual-Species Biofilm Formation. Front Microbiol 2020; 11:177. [PMID: 32184763 PMCID: PMC7058548 DOI: 10.3389/fmicb.2020.00177] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microorganisms in dairy industries can form monospecies, dual-species, or multispecies biofilms, showing cooperative or competitive behaviors, which might contribute to the reduction of efficiency of cleaning and sanitization processes and eventually turn into a potential source of contamination. This study proposes to evaluate the behavior of Listeria monocytogenes in monospecies biofilms, cocultured with Bacillus cereus. The isolates were of dairy origin, and the selection occurred after studies of competition among species. The biofilm formations on AISI 304 stainless steel at 25°C in a stationary culture were analyzed to observe the cooperative or competitive interactions among species, as well as the effect of pre-adhered cells. Biofilm formation assays were performed in four experiments: Experiment 1: in the presence of strains of antagonistic substance producer B. cereus (+); Experiment 2: extract of the antagonistic substance of B. cereus; Experiment 3: pre-adhered cells of B. cereus; and Experiment 4: pre-adhered cells of L. monocytogenes. Subsequently, cooperative behavior was observed by scanning electron microscopy. The L. monocytogenes monospecies biofilm counts of greater than 5 log colony-forming units (CFU)/cm2 were also observed in dual-species biofilms in the presence of B. cereus (non-producers of antagonist substance), showing cooperative behavior between species. However, in the presence of antagonistic substance produced by B. cereus, the counts were lower, 1.39 and 1.70 log CFU/cm2 (p > 0.05), indicating that the antagonistic substance contributes to competitive interactions. These data are relevant for the development of new studies to control L. monocytogenes in the dairy industry.
Collapse
Affiliation(s)
| | | | - Dirce Yorika Kabuki
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Salt Tolerance Mechanism and Species Identification of the Plant Rhizosphere Bacterium JYZ-SD2. Curr Microbiol 2019; 77:388-395. [DOI: 10.1007/s00284-019-01835-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
|
21
|
Hussain MS, Kwon M, Park EJ, Seheli K, Huque R, Oh DH. Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Iñiguez-Moreno M, Gutiérrez-Lomelí M, Avila-Novoa MG. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries. Int J Food Microbiol 2019; 303:32-41. [PMID: 31129476 DOI: 10.1016/j.ijfoodmicro.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
Pathogens and spoilage microorganisms can develop multispecies biofilms on food contact surfaces; however, few studies have been focused on evaluated mixed biofilms of these microorganisms. Therefore this study investigated the biofilm development by pathogenic (Bacillus cereus, Escherichia coli, Listeria monocytogenes, and Salmonella enterica Enteritidis and Typhimurium serotypes) and spoilage (Bacillus cereus and Pseudomonas aeruginosa) microorganisms onto stainless-steel (SS) and polypropylene B (PP) coupons; under conditions that mimic the dairy, meat, and egg processing industry. Biofilms were developed in TSB with 10% chicken egg yolk (TSB + EY), TSB with 10% meat extract (TSB + ME) and whole milk (WM) onto SS and PP. Each tube was inoculated with 25 μL of each bacteria and then incubated at 9 or 25 °C, with enumeration at 1, 48, 120, 180 and 240 h. Biofilms were visualized by epifluorescence and scanning electron microscopy (SEM). Biofilm development occurred at different phases, depending on the incubation conditions. In the reversible adhesion, the cell density of each bacteria was between 1.43 and 6.08 Log10 CFU/cm2 (p < 0.05). Moreover, significant reductions in bacteria appeared at 9 °C between 1 and 48 h of incubation. Additionally, the constant multiplication of bacteria in the biofilm occurred at 25 °C between 48 and 180 h of incubation, with increments of 2.08 Log10 CFU/cm2 to S. Typhimurium. Population establishment was observed between 48 and 180 h and 180-240 h incubation, depending on the environmental conditions (25 and 9 °C, respectively). For example, in TSB + ME at 25 °C, S. Typhimurium, P aeruginosa, and L. monocytogenes showed no statistical differences in the amounts between 48 and 180 h incubation. The dispersion phase was identified for L. monocytogenes and B. cereus at 25 °C. Epifluorescence microscopy and SEM allowed visualizing the bacteria and extracellular polymeric substances at the different biofilm stages. In conclusion, pathogens and spoilage microorganisms developed monospecies with higher cellular densities than multiespecies biofilms. In multispecies biofilms, the time to reach each biofilm phase varied is depending on environmental factors. Cell count decrements of 1.12-2.44 Log10 CFU/cm2 occurred at 48 and 240 h and were most notable in the biofilms developed at 9 °C. Additionally, cell density reached by each microorganism was different, P. aeruginosa and Salmonella were the dominant microorganisms in the biofilms while B. cereus showed the lower densities until undetectable levels.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Laboratorio de Alimentos, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Laboratorio de Alimentos, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán, Jalisco, Mexico
| | - María Guadalupe Avila-Novoa
- Laboratorio de Microbiología, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán, Jalisco, Mexico.
| |
Collapse
|