1
|
Nunes A, Sforça ML, Rocco SA, Schmitz C, Azevedo GZ, Dos Santos BR, Moura S, Maraschin M. Brazilian honey: Metabolomic analysis and characterization by 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Food Res Int 2025; 207:116104. [PMID: 40086965 DOI: 10.1016/j.foodres.2025.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/16/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Honey is a complex matrix that contains a wide range of compounds. This rich composition is influenced by diverse environmental factors, including geographic and botanical origin. Honey has been among the most commonly tampered foods worldwide, with improvements in techniques to do it. Accordingly, there is a recurring need for new techniques and methods to assess the honey's metabolic profiles to distinguish adulterated from non-tampered samples. In this sense, this study aimed to determine the chemical profiles of honey samples from the eleven agroecological zones of the Santa Catarina State (southern Brazil), collected in the 2019-2020 and 2020-2021 harvest seasons through 1D- and 2D-NMR. As a result, a series of metabolites was identified and their concentrations measured in samples. Further, the metabolomic dataset was used for building descriptive models through chemometric techniques, in order to discriminate honey samples according to their geographic and botanical origins and harvest season effect. Twenty-one metabolites were identified, with predominance of glucose and fructose in all samples. Two other carbohydrates (sucrose and maltose) were identified in lower concentrations, in addition to amino acids, organic acids, ketone, alcohol, ester, and alkaloids. No discrepant 1H NMR resonances that could indicate fraud were detected in the spectra. By PCA, it was possible to find clusters with similar geographic origins, i.e., agroecological zones, and botanical origins. In this regard, patterns of composition were detected for honey samples of Eucalyptus spp. and Hovenia dulcis species, which presented acetoin and kynurenate, respectively, in higher concentrations. Taking together, the results allowed demonstrating that NMR spectroscopy coupled to chemometrics is an effective experimental approach to characterize Brazilian honey regarding their geographic origin and season of collection, despite the huge floral diversity available in that country for bee forage.
Collapse
Affiliation(s)
- Aline Nunes
- UFSC, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | | | | | - Caroline Schmitz
- UNIVATES, University of Vale do Taquari, Lajeado, Rio Grande do Sul, Brazil
| | - Gadiel Zilto Azevedo
- UFSC, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Sidnei Moura
- UCS, Caxias do Sul University, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Marcelo Maraschin
- UFSC, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
2
|
Cui C, Xia M, Wei Z, Chen J, Peng C, Cai H, Jin L, Hou R. 1H NMR-based metabolomic approach combined with machine learning algorithm to distinguish the geographic origin of huajiao (Zanthoxylum bungeanum Maxim.). Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Tarapoulouzi M, Mironescu M, Drouza C, Mironescu ID, Agriopoulou S. Insight into the Recent Application of Chemometrics in Quality Analysis and Characterization of Bee Honey during Processing and Storage. Foods 2023; 12:473. [PMID: 36766000 PMCID: PMC9914568 DOI: 10.3390/foods12030473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The application of chemometrics, a widely used science in food studies (and not only food studies) has begun to increase in importance with chemometrics being a very powerful tool in analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing honey authenticity and quality control, combined with well-established analytical methods. Research related to investigation of the quality changes in honey due to modifications after processing and storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This review presents the evolution in the last few years in using chemometrics in analyzing honey quality during processing and storage. The advantages of using chemometrics in assessing honey quality during storage and processing are presented, together with the main characteristics of some well-known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey samples based on changes of characteristics during storage and processing.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Chryssoula Drouza
- Department of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol 3036, Cyprus
| | - Ion Dan Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
4
|
Nunes A, Zilto Azevedo G, Rocha dos Santos B, Vanz Borges C, Pace Pereira Lima G, Conte Crocoli L, Moura S, Maraschin M. Characterization of Brazilian floral honey produced in the states of Santa Catarina and São Paulo through ultraviolet–visible (UV–vis), near-infrared (NIR), and nuclear magnetic resonance (NMR) spectroscopy. Food Res Int 2022; 162:111913. [DOI: 10.1016/j.foodres.2022.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
5
|
Bachmann R, Horns AL, Paasch N, Schrieck R, Weidner M, Fransson I, Schrör JP. Minor metabolites as chemical marker for the differentiation of cane, beet and coconut blossom sugar. From profiling towards identification of adulterations. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Cagliani L, Maestri G, Consonni R. Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Ren YF, Feng C, Ye ZH, Zhu HY, Hou RY, Granato D, Cai HM, Peng CY. Keemun black tea: Tracing its narrow-geographic origins using comprehensive elemental fingerprinting and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Lima ÂCO, Dias ER, Reis IMA, Carneiro KO, Pinheiro AM, Nascimento AS, Silva SMPC, Carvalho CAL, Mendonça AVR, Vieira IJC, Braz Filho R, Branco A. Ferulic acid as major antioxidant phenolic compound of the Tetragonisca angustula honey collected in Vera Cruz - Itaparica Island, Bahia, Brazil. BRAZ J BIOL 2022; 84:e253599. [DOI: 10.1590/1519-6984.253599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH● assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS●+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.
Collapse
Affiliation(s)
- Â. C. O. Lima
- Universidade Estadual de Feira de Santana, Brasil; Universidade Federal do Recôncavo da Bahia, Brasil
| | - E. R. Dias
- Universidade Estadual de Feira de Santana, Brasil
| | | | | | | | | | | | | | | | - I. J. C. Vieira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil
| | - R. Braz Filho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brasil; Universidade Federal Rural do Rio de Janeiro, Brasil
| | - A. Branco
- Universidade Estadual de Feira de Santana, Brasil
| |
Collapse
|
9
|
QU Q, JIN L. Application of nuclear magnetic resonance in food analysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kamal GM, Uddin J, Muhsinah AB, Wang X, Noreen A, Sabir A, Musharraf SG. 1H NMR-Based metabolomics and 13C isotopic ratio evaluation to differentiate conventional and organic soy sauce. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Labsvards KD, Rudovica V, Kluga R, Rusko J, Busa L, Bertins M, Eglite I, Naumenko J, Salajeva M, Viksna A. Determination of Floral Origin Markers of Latvian Honey by Using IRMS, UHPLC-HRMS, and 1H-NMR. Foods 2021; 11:foods11010042. [PMID: 35010167 PMCID: PMC8750591 DOI: 10.3390/foods11010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
The economic significance of honey production is crucial; therefore, modern and efficient methods of authentication are needed. During the last decade, various data processing methods and a combination of several instrumental methods have been increasingly used in food analysis. In this study, the chemical composition of monofloral buckwheat (Fagopyrum esculentum), clover (Trifolium repens), heather (Calluna vulgaris), linden (Tilia cordata), rapeseed (Brassica napus), willow (Salix cinerea), and polyfloral honey samples of Latvian origin were investigated using several instrumental analysis methods. The data from light stable isotope ratio mass spectrometry (IRMS), ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), and nuclear magnetic resonance (NMR) analysis methods were used in combination with multivariate analysis to characterize honey samples originating from Latvia. Results were processed using the principal component analysis (PCA) to study the potential possibilities of evaluating the differences between honey of different floral origins. The results indicate the possibility of strong differentiation of heather and buckwheat honeys, and minor differentiation of linden honey from polyfloral honey types. The main indicators include depleted δ15N values for heather honey protein, elevated concentration levels of rutin for buckwheat honey, and qualitative presence of specific biomarkers within NMR for linden honey.
Collapse
Affiliation(s)
- Kriss Davids Labsvards
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia
- Correspondence: ; Tel.: +371-26395784
| | - Vita Rudovica
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Rihards Kluga
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Janis Rusko
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Street 3, LV-1076 Riga, Latvia
| | - Lauma Busa
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Maris Bertins
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Ineta Eglite
- Latvian Beekeeping Association, Rigas Street 22, LV-3004 Jelgava, Latvia;
| | - Jevgenija Naumenko
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Marina Salajeva
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| | - Arturs Viksna
- Department of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (V.R.); (R.K.); (J.R.); (L.B.); (M.B.); (J.N.); (M.S.); (A.V.)
| |
Collapse
|
12
|
da Silva Bruni AR, de Oliveira VMAT, Fernandez AST, Sakai OA, Março PH, Valderrama P. Attenuated total reflectance Fourier transform (ATR-FTIR) spectroscopy and chemometrics for organic cinnamon evaluation. Food Chem 2021; 365:130466. [PMID: 34247048 DOI: 10.1016/j.foodchem.2021.130466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/18/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Organic food consumption has increased significantly over time. This contributes to the increased demand and price of this kind of food. Among the organic products, cinnamon stands out for its characteristic flavor and bioactive compounds. Thus, the work aimed to verify the potentials of attenuated total reflectance Fourier transform mid-infrared spectroscopy (ATR-FT-MIR) coupled with Parallel Factor Analysis (PARAFAC) for evaluation of cinnamon organic samples. As result, the proposal is feasible in the differentiation of organic cinnamon powder, in which ATR-FT-MIR coupled with PARAFAC showed the differentiation of organic from non-organic ones on the scores mode, the precision at repeatability level on one loading mode, and the spectral region, on the other loading mode, above 2600 cm-1 was related to the differentiation of the organic and non-organic samples.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Henrique Março
- Universidade Tecnológica Federal do Paraná (UTFPR), 87301-899 Campo Mourão, Paraná, Brazil
| | - Patrícia Valderrama
- Universidade Tecnológica Federal do Paraná (UTFPR), 87301-899 Campo Mourão, Paraná, Brazil.
| |
Collapse
|
13
|
Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, Romano D, Borin S, Tsiamis G, Cherif A, Alma A, Daffonchio D. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 2021; 7:42. [PMID: 33963194 PMCID: PMC8105395 DOI: 10.1038/s41522-021-00212-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.
Collapse
Affiliation(s)
- Matteo Callegari
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy.
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Diego Romano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinion, Greece
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST), BVBGR-LR11ES31, Biotechpole Sidi Thabet, University Manouba, Ariana, Tunisia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
14
|
Tsagkaris AS, Koulis GA, Danezis GP, Martakos I, Dasenaki M, Georgiou CA, Thomaidis NS. Honey authenticity: analytical techniques, state of the art and challenges. RSC Adv 2021; 11:11273-11294. [PMID: 35423655 PMCID: PMC8695996 DOI: 10.1039/d1ra00069a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Honey is a high-value, globally consumed, food product featuring a high market price strictly related to its origin. Moreover, honey origin has to be clearly stated on the label, and quality schemes are prescribed based on its geographical and botanical origin. Therefore, to enhance food quality, it is of utmost importance to develop analytical methods able to accurately and precisely discriminate honey origin. In this study, an all-time scientometric evaluation of the field is provided for the first time using a structured keyword on the Scopus database. The bibliometric analysis pinpoints that the botanical origin discrimination was the most studied authenticity issue, and chromatographic methods were the most frequently used for its assessment. Based on these results, we comprehensively reviewed analytical techniques that have been used in honey authenticity studies. Analytical breakthroughs and bottlenecks on methodologies to assess honey quality parameters using separation, bioanalytical, spectroscopic, elemental and isotopic techniques are presented. Emphasis is given to authenticity markers, and the necessity to apply chemometric tools to reveal them. Altogether, honey authenticity is an ever-growing field, and more advances are expected that will further secure honey quality.
Collapse
Affiliation(s)
- Aristeidis S Tsagkaris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague Technická 5, 166 28 Prague 6 - Dejvice Prague Czech Republic
| | - Georgios A Koulis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Georgios P Danezis
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Ioannis Martakos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Marilena Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| | - Constantinos A Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens 75 Iera Odos 118 55 Athens Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis Zographou 15771 Athens Greece http://trams.chem.uoa.gr/ +30 210 7274750 +30 210 7274317
| |
Collapse
|
15
|
Liao LH, Pearlstein DJ, Wu WY, Kelley AG, Montag WM, Hsieh EM, Berenbaum MR. Increase in longevity and amelioration of pesticide toxicity by natural levels of dietary phytochemicals in the honey bee, Apis mellifera. PLoS One 2020; 15:e0243364. [PMID: 33296402 PMCID: PMC7725320 DOI: 10.1371/journal.pone.0243364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
For the past decade, migratory beekeepers who provide honey bees for pollination services have experienced substantial colony losses on a recurring basis that have been attributed in part to exposure to insecticides, fungicides, or their combinations applied to crops. The phytochemicals p-coumaric acid and quercetin, which occur naturally in a wide variety of bee foods, including beebread and many types of honey, can enhance adult bee longevity and reduce the toxicity of certain pesticides. How variation in concentrations of natural dietary constituents affects interactions with xenobiotics, including synthetic pesticides, encountered in agroecosystems remains an open question. We tested the effects of these two phytochemicals at a range of natural concentrations on impacts of consuming propiconazole and chlorantraniliprole, a triazole fungicide and an insecticide frequently applied as a tank mix to almond trees during bloom in California's Central Valley. Propiconazole, even at low field concentrations, significantly reduced survival and longevity when consumed by adult bees in a sugar-based diet. The effects of propiconazole in combination with chlorantraniliprole enhanced mortality risk. The detrimental effects of the two pesticides were for the most part reduced when either or both of the phytochemicals were present in the diet. These findings suggest that honey bees may depend on non-nutritive but physiologically active phytochemical components of their natural foods for ameliorating xenobiotic stress, although only over a certain range of concentrations; particularly at the high end of the natural range, certain combinations can incur additive toxicity. Thus, efforts to develop nectar or pollen substitutes with phytochemicals to boost insecticide tolerance or immunity or to evaluate toxicity of pesticides to pollinators should take concentration-dependent effects of phytochemicals into consideration.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Daniel J. Pearlstein
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Allison G. Kelley
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Parkland College, Champaign, IL, United States of America
| | - William M. Montag
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Edward M. Hsieh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - May R. Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
16
|
Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2020; 342:128258. [PMID: 33508899 DOI: 10.1016/j.foodchem.2020.128258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Due to a number of unparalleled advantages such as fastness, accuracy, intactness, nuclear magnetic resonance spectroscopy (NMR) has fulfilled a significant role in determining structures and dynamics of various physical, chemical and biological systems in the field of food analysis. This study introduced the principle of NMR, key NMR techniques such as 1H NMR, DOSY, NOESY, HSQC, etc., and the knowledge of NMR applications on the evaluation of complex food system, especially the interactions of food components. The reviewed research work provides sufficient evidence that NMR spectroscopy has been an invaluable tool and will play an increasingly important role in specific technical support for food assessment. In addition, NMR combined with various other technologies could give a complete picture of the mechanism of the performance of functional food compounds, which are vital for human health and influence the intrinsic food properties during processing, storage and transportation at the molecular level.
Collapse
Affiliation(s)
- Ruge Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianya Cao
- Institute of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
| | - Aili Wang
- Key laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Haidian, Beijing 100081, China.
| |
Collapse
|
17
|
Wang Y, Zhang M, Wang D, Zhang Y, Jiao X, Liu Y. Development of a real-time LAMP assay for monofloral honey authentication using rape honey. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1749135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Meng Zhang
- School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Deguo Wang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Yongqing Zhang
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Xuexue Jiao
- Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, USA
| |
Collapse
|
18
|
A Contribution to the Harmonization of Non-targeted NMR Methods for Data-Driven Food Authenticity Assessment. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01664-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|