1
|
Yu ZJ, Deng DH, Liang SR, Huang YL, Yi XY. Overview of Gas-Generating-Reaction-Based Immunoassays. BIOSENSORS 2024; 14:580. [PMID: 39727844 PMCID: PMC11726966 DOI: 10.3390/bios14120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices. This article summarizes the advances in gas-generating-reaction-based immunoassays, according to different types of signal output systems, including distance-based readout, pressure differential, visualized detection, and thermal measurement. The review mainly focuses on the role of photothermal materials and the working principle of immunoassays. In addition, the challenges and prospects for the future development of gas-generating-reaction-based immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Zhao-Jiang Yu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - De-Hua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Si-Rui Liang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Ya-Liang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| | - Xin-Yao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
2
|
Lu J, Wang L. Multiple electromagnet synergistic control enabled fast and automatic biosensing of Salmonella in a sealed microfluidic chip. Biosens Bioelectron 2023; 237:115459. [PMID: 37392491 DOI: 10.1016/j.bios.2023.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Point-of-care testing of pathogens is vital for prevention of food poisoning. Herein, a colorimetric biosensor was elaborately developed to rapidly and automatically detect Salmonella in a sealed microfluidic chip with one central chamber for housing immunomagnetic nanoparticles (IMNPs), bacterial sample and immune manganese dioxide nanoclusters (IMONCs), four functional chambers for housing absorbent pad, deionized water and H2O2-TMB substrate, and four symmetric peripheral chambers for achieving fluidic control. Four electromagnets were placed under peripheral chambers and synergistically controlled to manipulate their respective iron cylinders at the top of these chambers for deforming these chambers, resulting in precise fluidic control with designated flowrate, volume, direction and time. First, the electromagnets were automatically controlled to mix IMNPs, target bacteria and IMONCs, resulting in the formation of IMNP-bacteria-IMONC conjugates. Then, these conjugates were magnetically separated by a central electromagnet and the supernatant was directionally transferred to the absorbent pad. After these conjugates were washed by deionized water, the H2O2-TMB substrate was directionally transferred to resuspend the conjugates and catalyzed by the IMONCs with peroxidase-mimic activity. Finally, the catalysate was directionally transferred back to its initial chamber, and its color was analyzed by the smartphone APP to determinate bacterial concentration. This biosensor could detect Salmonella quantitatively and automatically in 30 min with a low detection limit of 101 CFU/mL. More importantly, the whole bacterial detection procedure from bacterial separation to result analysis was achieved on a sealed microfluidic chip through multiple electromagnet synergistic control, and this biosensor has great potential for point-of-care testing of pathogens without cross contaminations.
Collapse
Affiliation(s)
- Jialin Lu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Wang L, Qi W, Wang M, Jiang F, Ding Y, Xi X, Liao M, Li Y, Lin J. A pipette-adapted biosensor for Salmonella detection. Biosens Bioelectron 2022; 218:114765. [DOI: 10.1016/j.bios.2022.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
|
4
|
Development of an Integrated Biochip System Consisting of a Magnetic Particle Washing Station and a Markerless Volumetric Biochip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Wang L, Xu A, Yuan J, Jiang F, Li M, Qi W, Li Y, Lin J. Hourglass-mimicking biosensor based on disposable centrifugal tube for bacterial detection in large-volume sample. Biosens Bioelectron 2022; 216:114653. [DOI: 10.1016/j.bios.2022.114653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 12/13/2022]
|
6
|
Detection of Listeria monocytogenes based on teicoplanin functionalized magnetic beads combined with fluorescence assay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
8
|
Development of an Inkless, Visual Volumetric Chip Operated with a Micropipette. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00021-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wang Y, Ma X, Qiao X, Yang P, Sheng Q, Zhou M, Yue T. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. EFOOD 2021. [DOI: 10.2991/efood.k.210621.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
10
|
Bu S, Wang K, Wang C, Li Z, Hao Z, Liu W, Wan J. Immunoassay for foodborne pathogenic bacteria using magnetic composites Ab@Fe 3O 4, signal composites Ap@PtNp, and thermometer readings. Mikrochim Acta 2020; 187:679. [PMID: 33247373 DOI: 10.1007/s00604-020-04657-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023]
Abstract
A point-of-care (POC) immunoassay was established for the sensitive and rapid detection of pathogenic Escherichia coli O157:H7, using magnetic Fe3O4 organic-inorganic composites (Ab@Fe3O4) for immunomagnetic separation, nanozyme platinum nanoparticle (PtNp) organic-inorganic composites (Ap@PtNp) for signal amplification, and thermometer readings. Antibodies and Fe3O4 were incubated in Cu2+ phosphate buffer to synthesize the magnetic composite Ab@Fe3O4 with antibodies, to specifically capture E. coli O157:H7. Antimicrobial peptides and PtNp were incubated in Cu2+ phosphate buffer to synthesize the signal composites Ap@PtNp with antimicrobial peptides (magainin I), recognizing and labeling E. coli O157:H7. In the presence of E. coli O157:H7, magnetic microcomposites targeted bacteria and signal microcomposites to form the sandwich structure: Ab@Fe3O4-bacteria-Ap@PtNp for magnetic separation. Ap@PtNp of signal composites catalyzed H2O2 to generate thermo-signals (temperature rise), which were determined by a thermometer. This point-of-care bioassay detected E. coli O157:H7 in the linear range of 101-107 CFU mL-1 and with a detection limit of 14 CFU mL-1. One-pot process magnetic Fe3O4 organic-inorganic composites (Ab@Fe3O4, magnetic microcomposites, MMC) for immunomagnetic separation and nanozyme platinum nanoparticle (PtNp) organic-inorganic composites (Ap@PtNp, signal microcomposites, SMC) were used as signal amplification and thermometer readings for E. coli O157:H7 detection.
Collapse
Affiliation(s)
- Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Chengyu Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhongyi Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhuo Hao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Wensen Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| |
Collapse
|
11
|
Zhao Y, Bu S, Wang C, Ma C, Li Z, Zhang W, Wan J. Dual Aptamer-Copper (II) Phosphate Nanocomposite-Based Point-of-Care Biosensor for the Determination of Escherichia coli O157:H7 through Pressure Monitoring with a Hand-Held Barometer. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1817059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yinghao Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Chengyu Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Chengyou Ma
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
| | - Zhongyi Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| |
Collapse
|
12
|
Leng Y, Bu S, Li Z, Hao Z, Ma C, He X, Wan J. A Colorimetric Immunosensor Based on Hemin@MI Nanozyme Composites, with Peroxidase-like Activity for Point-of-care Testing of Pathogenic E. coli O157:H7. ANAL SCI 2020; 37:941-947. [PMID: 32893249 DOI: 10.2116/analsci.20p081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, nanozymes have become a topic of particular interest due to their high activity level, stability and biocompatibility. In this study, a visual, sensitive and selective point-of-care immunosensor was established to test the pathogen Escherichia coli O157:H7 (E. coli O157:H7). Hemin and magainin I (MI) hybrid nanocomposites (Hemin@MI) with peroxidase-mimicking activities were synthesized via a "one-pot" method, involving the simple mixing of an antimicrobial peptide (MI) against E. coli O157:H7 and hemin in a copper sulfate sodium phosphate saline buffer. Hemin@MI nanocomposites integrating target recognition and signal amplification were developed as signal probes for the point-of-care colorimetric detection of pathogenic E. coli O157:H7. Hemin@MI nanocomposites exhibit excellent peroxidase activity for the chromogenic reaction of ABTS, which allows for the visual point-of-care testing of E. coli O157:H7 in the range of 102 to 108 CFU/mL, with a limit of detection of 85 CFU/mL. These data suggest this immunosensor provides accessible and portable assessments of pathogenic E. coli O157:H7 in real samples.
Collapse
Affiliation(s)
- Yan Leng
- School of Life Science and Technology, Changchun University of Science and Technology.,Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Zhongyi Li
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Zhuo Hao
- Institute of Military Veterinary, Academy of Military Medical Sciences
| | - Chengyou Ma
- College of Geo-Exploration Science and Technology, Jilin University
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences
| |
Collapse
|
13
|
Wang L, Lin J. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Sun H, Cai S, Wang C, Chen Y, Yang R. Recent Progress of Nanozymes in the Detection of Pathogenic Microorganisms. Chembiochem 2020; 21:2572-2584. [PMID: 32352212 DOI: 10.1002/cbic.202000126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/11/2020] [Indexed: 12/17/2022]
Abstract
Infectious diseases are among the world's principal health problems. It is crucial to develop rapid, accurate and cost-effective methods for the detection of pathogenic microorganisms. Recently, considerable progress has been achieved in the field of inorganic enzyme mimics (nanozymes). Compared with natural enzymes, nanozymes have higher stability and lower cost. More interestingly, their properties can be designed for various demands. Herein, we introduce the latest research progress on the detection of pathogenic microorganisms by using various nanozymes. We also discuss the current challenges of nanozymes in biosensing and provide some strategies to overcome these barriers.
Collapse
Affiliation(s)
- Huiyuan Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China
| | - Chen Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China
| | - Yongxiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China.,Sino-Danish College, UCAS, Sino-Danish Center for Education and Research, Beijing, 100190, P. R. China
| |
Collapse
|
15
|
Zheng L, Cai G, Qi W, Wang S, Wang M, Lin J. Optical Biosensor for Rapid Detection of Salmonella typhimurium Based on Porous Gold@Platinum Nanocatalysts and a 3D Fluidic Chip. ACS Sens 2020; 5:65-72. [PMID: 31875386 DOI: 10.1021/acssensors.9b01472] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Screening of pathogenic bacteria is a key to avoid food poisoning. The major drawbacks of existing assays for foodborne bacteria detection include long time for culture, complex DNA extraction for the polymerase chain reaction (PCR), and low sensitivity for enzyme-linked immunosorbent assay (ELISA), greatly limiting their practical applications. Here, we developed a sensitive optical biosensor based on porous gold@platinum nanocatalysts (Au@PtNCs) and a passive three-dimensional (3D) micromixer for fast detection of Salmonella typhimurium. The target Salmonella cells were first separated using immunomagnetic nanoparticles and the passive 3D micromixer. Then, immune Au@PtNCs were labeled onto the target cells as signal output to catalyze hydrogen peroxide-3,3',5,5'-tetramethylbenzidine. Finally, the absorbance was measured at 652 nm to calculate the bacterial amount. This optical biosensor could detect Salmonella at concentrations from 1.8 × 101 to 1.8 × 107 CFU/mL in 1 h. Its detection limit was calculated to be 17 CFU/mL. Besides, this passive 3D micromixer could magnetically separate 99% of target bacteria from the sample in 10 min. This biosensor has the potential to be extended to detect other bacteria by changing the antibodies.
Collapse
Affiliation(s)
- Lingyan Zheng
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Gaozhe Cai
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Maohua Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Liu L, Liu J, Huang H, Li Y, Zhao G, Dou W. A quantitative foam immunoassay for detection of Escherichia coli O157:H7 based on bimetallic nanocatalyst‑gold platinum. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Choi JR, Yong KW, Choi JY, Cowie AC. Emerging Point-of-care Technologies for Food Safety Analysis. SENSORS (BASEL, SWITZERLAND) 2019; 19:817. [PMID: 30781554 PMCID: PMC6412947 DOI: 10.3390/s19040817] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Food safety issues have recently attracted public concern. The deleterious effects of compromised food safety on health have rendered food safety analysis an approach of paramount importance. While conventional techniques such as high-performance liquid chromatography and mass spectrometry have traditionally been utilized for the detection of food contaminants, they are relatively expensive, time-consuming and labor intensive, impeding their use for point-of-care (POC) applications. In addition, accessibility of these tests is limited in developing countries where food-related illnesses are prevalent. There is, therefore, an urgent need to develop simple and robust diagnostic POC devices. POC devices, including paper- and chip-based devices, are typically rapid, cost-effective and user-friendly, offering a tremendous potential for rapid food safety analysis at POC settings. Herein, we discuss the most recent advances in the development of emerging POC devices for food safety analysis. We first provide an overview of common food safety issues and the existing techniques for detecting food contaminants such as foodborne pathogens, chemicals, allergens, and toxins. The importance of rapid food safety analysis along with the beneficial use of miniaturized POC devices are subsequently reviewed. Finally, the existing challenges and future perspectives of developing the miniaturized POC devices for food safety monitoring are briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054⁻6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Kar Wey Yong
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Alistair C Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|