1
|
Yang R, Zhang S, Tang J. Mathematical Modeling of Salmonella Inactivation During Apple Drying and Pre-Drying Heating in Closed Environments. Foods 2024; 13:3877. [PMID: 39682949 DOI: 10.3390/foods13233877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Drying is one of the most effective preservation methods for extending the shelf-life of perishable foods. The microbial safety of low-moisture food products had not been recognized as a concern until outbreaks reported over the past decade in products contaminated with bacterial pathogens, in particular Salmonella. There is now an urgent need to understand the influence of process conditions on the thermal inactivation of pathogens in various drying operations. This study aimed to develop a predictive model for Salmonella inactivation in diced apples during hot air drying and in high-humidity heating in closed environments. Fresh-cut apple cubes (6 mm) inoculated with a cocktail of Salmonella enterica strains (Enteritidis PT30, Montevideo 488275, and Agona 447967) were placed in a customized box inside an oven for three different treatments: (1) open-box drying at oven temperature 90 °C (Drying-90); (2) close-box pre-drying heating at 90 °C (PD heating-90); and (3) close-box pre-drying heating at 70 °C (PD heating-70). Air temperature, relative humidity (RH), and sample temperatures were monitored, and Salmonella survival was measured at multiple time intervals. After 10 min, the air RH reached 66% in PD heating-90 and 74% in PD heating-70, versus 30% in Drying-90. A 5-log reduction in Salmonella was achieved in 8.5 min in PD heating-90, and 14 min in PD heating-70, compared to 28.7 min in Drying-90. A mathematical model using sample surface RH and sample temperature profiles accurately predicted Salmonella inactivation across all treatments (RMSE = 0.92 log CFU/g, R2 = 0.86), with thermal death parameters comparable to isothermal studies. This study underscores the role of humidity in enhancing microbial reduction during drying and proposes high-humidity pre-drying heating as an effective control step. The developed model shows promise for real-time prediction of microbial inactivation in complex drying environments with dynamic temperature and humidity conditions.
Collapse
Affiliation(s)
- Ren Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, P.O. Box 2100, SRPA-136, Brookings, SD 57007, USA
| | - Shuang Zhang
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164, USA
| | - Juming Tang
- Department of Industrial & Systems Engineering, University of Washington, P.O. Box 352650, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Rana YS, Chen L, Jiao Y, Johnson LM, Snyder AB. A meta-analysis of microbial thermal inactivation in low moisture foods. Food Microbiol 2024; 121:104515. [PMID: 38637077 DOI: 10.1016/j.fm.2024.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.
Collapse
Affiliation(s)
| | - Long Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA; College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yang Jiao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lynn M Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Liu S, Qiu Y, Su G, Sheng L, Qin W, Ye Q, Wu Q. Enhanced heat tolerance of freeze-dried Enterococcus faecium NRRL B-2354 as valid Salmonella surrogate in low-moisture foods. Food Res Int 2023; 173:113232. [PMID: 37803547 DOI: 10.1016/j.foodres.2023.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
In microbial studies of low-moisture foods (LMFs, water activity less than 0.85), freeze-dried bacteria benefit us to inoculate LMFs without introducing extra water or altering food physiochemical properties. However, the freeze-drying process would bring unavoidable damage to bacterial cells and results in less-resistant inoculum that are unlikely to be qualified in microbial studies. Herein, we enhanced bacterial heat tolerance by subjecting the cells to mild heat (42-50 °C) to counteract the reduced heat tolerance and survivability of freeze-dried bacteria. Enterococcus faecium NRRL B-2354 (E. faecium), a Salmonella surrogate in LMFs, was used as the target microorganism because it was widely accepted in microbial validation of thermal pasteurizing LMFs. Three types of LMFs (peanut powder, protein powder, and onion powder) were used as LMFs models to validate the freeze-dried E. faecium in comparison with Salmonella enterica Enteritidis PT 30 (S. Enteritidis) prepared by the traditional aqueous method. The heat tolerance (D65℃ value) of E. faecium increased at all treatments and peaked (+31.48 ± 0.13%) at temperature-time combinations of 45 °C-60 min and 50 °C-5 min. Survivability of freeze-dried inoculum and its heat tolerance retained well within 50 d storage. The freeze-dried E. faecium was prepared in this study brought equal or higher heat tolerance (D85℃ or D75℃) than S. Enteritidis in tested LMFs models. For instance, the D85℃ of freeze-dried E. faecium (heat-treated at 50 °C for 5 min) and S. Enteritidis in whole egg powder are 35.56 ± 1.52 min and 28.41 ± 0.41 min, respectively. The freeze-dried E. faecium with enhanced heat tolerance appears to be a suitable Salmonella surrogate for dry-inoculating LMFs. Our protocol also enables industry-scale production of freeze-dried inoculum by broth-cultivation method combined with mild-heat treatment.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Yan Qiu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Qinghua Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
4
|
Liu S, Xue R, Qin W, Yang X, Ye Q, Wu Q. Performance and transcriptome analysis of Salmonella enterica serovar Enteritidis PT 30 under persistent desiccation stress: Cultured by lawn and broth methods. Food Microbiol 2023; 115:104323. [PMID: 37567618 DOI: 10.1016/j.fm.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/β value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Ruimin Xue
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Sun S, Xie Y, Zhou X, Zhu MJ, Sablani S, Tang J. Survival and thermal resistance of Salmonella in chocolate products with different water activities. Food Res Int 2023; 172:113209. [PMID: 37689954 DOI: 10.1016/j.foodres.2023.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
Contamination of Salmonella in chocolate products has caused worldwide outbreaks and recalls. There is a lack of information on the impact of water activity (aw) on the stability of Salmonella in chocolate products during storage and thermal treatments. In this research, the survival and thermal resistance of a Salmonella cocktail (S. Enteritidis PT30, S. Tennessee K4643, S. Typhimurium S544) was examined in different chocolate products (dark chocolate, white chocolate, milk chocolate) at two aw levels (0.25, 0.50) over 12 months at 22 °C. A reduction of 4.19 log10 CFU/gof Salmonella was obtained in dark chocolate after 12 months (aw = 0.50, at 22 °C); less reductions were observed in white and milk chocolates. In all three products, more reductions were observed ataw = 0.50 than at aw = 0.25 over the 12-months storage. When treated at 80 °C, the D-values (time required to cause 1 log reduction) of the Salmonella cocktail in the chocolate samples with initial aw of 0.25 were 35.7, 25.2 and 11.6 min in dark, white and milk chocolate, respectively, before the storage. The D80°C -values of Salmonella cocktail in the samples with initial aw of 0.50 were 6.45, 7.46, and 3.98 min in dark, white and milk chocolate, respectively. After 12 months of storage at 22 °C, the D80°C-value of Salmonella cocktail decreased to 9.43 min (p < 0.05) in milk chocolate but remained 22.7 min in white chocolate with an aw of 0.25 at 22 °C. The data suggests that Salmonella can survive in chocolate products for up to 12 months, and its thermal resistance remained relatively stable. Thus, Salmonella is resistant to desiccation in chocolates, particularly in milk and white chocolates, and its thermal resistance remains during one-year storage, which could pose a potential threat for future outbreaks.
Collapse
Affiliation(s)
- Sicheng Sun
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Yucen Xie
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Xu Zhou
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Shyam Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
6
|
Liu S, Qiu Y, Ji K, Ozturk S, Erdoğdu F, Qin W, Yang R, Wu Q. Effect of oil exposure stages on the heat resistance of Salmonella enterica serovar Enteritidis phage type 30 in peanut flour. Food Microbiol 2023; 113:104275. [PMID: 37098433 DOI: 10.1016/j.fm.2023.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The oil in low-moisture foods (LMFs) shows protective effects on bacteria during thermal processing. However, the circumstances under which this protective effect strengthens remain unclear. This study aimed to understand which step of the oil exposure to bacterial cells (inoculation, isothermal inactivation, or recovery and enumeration step) in LMFs can enhance their heat resistance. Peanut flour (PF) and defatted PF (DPF) were selected as the oil-rich and oil-free LMF models. Salmonella enterica Enteritidis Phage Type 30 (S. Enteritidis) was inoculated into four designated PF groups representing different oil exposure stages. It was isothermally treated to obtain heat resistance parameters. At a constant moisture content (aw,25°C = 0.32 ± 0.02) and controlled aw,85°C (0.32 ± 0.02), S. Enteritidis exhibited significantly high (p < 0.05) D values in oil-rich sample groups. For instance, the heat resistance values of S. Enteritidis in the PF-DPF and DPF-PF groups were D80°C of 138.22 ± 7.45 min and 101.89 ± 7.82 min; however, the D80°C in the DPF-DPF group was 34.54 ± 2.07 min. The oil addition after the thermal treatment also helped injured bacterial recovery in the enumeration. For instance, the D80°C, D85°C, and D90°C values in the DFF-DPF oil groups were 36.86 ± 2.30, 20.65 ± 1.23, and 7.91 ± 0.52 min, respectively, which were higher than those in the DPF-DPF group at 34.54 ± 2.07, 17.87 ± 0.78, and 7.10 ± 0.52 min. We confirmed that the oil protected S. Enteritidis in PF in all three stages: desiccation process, heat treatment, and recovery of bacterial cells in plates.
Collapse
|
7
|
Yao S, LiBrizzi BR, Chen H. Heating temperature and water activity of alfalfa seeds affect thermal inactivation of Salmonella and maintaining seed viability. Int J Food Microbiol 2023; 384:109975. [DOI: 10.1016/j.ijfoodmicro.2022.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
8
|
Sun S, Xie Y, Yang R, Zhu MJ, Sablani S, Tang J. The influence of temperature and water activity on thermal resistance of Salmonella in milk chocolate. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Practice and Progress: Updates on Outbreaks, Advances in Research, and Processing Technologies for Low-moisture Food Safety. J Food Prot 2023; 86:100018. [PMID: 36916598 DOI: 10.1016/j.jfp.2022.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 12/31/2022]
Abstract
Large, renowned outbreaks associated with low-moisture foods (LMFs) bring to light some of the potential, inherent risks that accompany foods with long shelf lives if pathogen contamination occurs. Subsequently, in 2013, Beuchat et al. (2013) noted the increased concern regarding these foods, specifically noting examples of persistence and resistance of pathogens in low-water activity foods (LWAFs), prevalence of pathogens in LWAF processing environments, and sources of and preventive measures for contamination of LWAFs. For the last decade, the body of knowledge related to LMF safety has exponentially expanded. This growing field and interest in LMF safety have led researchers to delve into survival and persistence studies, revealing that some foodborne pathogens can survive in LWAFs for months to years. Research has also uncovered many complications of working with foodborne pathogens in desiccated states, such as inoculation methods and molecular mechanisms that can impact pathogen survival and persistence. Moreover, outbreaks, recalls, and developments in LMF safety research have created a cascading feedback loop of pushing the field forward, which has also led to increased attention on how industry can improve LMF safety and raise safety standards. Scientists across academia, government agencies, and industry have partnered to develop and evaluate innovate thermal and nonthermal technologies to use on LMFs, which are described in the presented review. The objective of this review was to describe aspects of the extensive progress made by researchers and industry members in LMF safety, including lessons-learned about outbreaks and recalls, expansion of knowledge base about pathogens that contaminate LMFs, and mitigation strategies currently employed or in development to reduce food safety risks associated with LMFs.
Collapse
|
10
|
Yang R, Lombardo SP, Conway WF, Tang J. Inactivation of Salmonella Enteritidis PT30 on black peppercorns in thermal treatments with controlled relative humidities. Food Res Int 2022; 162:112101. [DOI: 10.1016/j.foodres.2022.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
11
|
Sharma P, Xiao HW, Zhang Q, Sutar P. Intermittent high-power short-time microwave-vacuum treatment combined with steam impingement for effective microbial decontamination of black pepper (Piper nigrum). J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Wang Y, Yang H. Metabolomics elucidating the effect of water activity on the thermal resistance of Salmonella in wheat flour. Food Res Int 2022; 162:112203. [DOI: 10.1016/j.foodres.2022.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
13
|
Xu S, Chen H. Vacuum packaging improved inactivation efficacy of moderate dry heat for decontamination of Salmonella on almond kernels. Int J Food Microbiol 2022; 379:109849. [DOI: 10.1016/j.ijfoodmicro.2022.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
|
14
|
Thermal death kinetics of Salmonella Enteritidis PT30 in peanut butter as influenced by water activity. Food Res Int 2022; 157:111288. [DOI: 10.1016/j.foodres.2022.111288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
|
15
|
Yang R, Cheng T, Hong Y, Wei L, Tang J. The effect of dry headspace on the thermal resistance of bacteria in peanut oil and peanut butter in thermal treatments. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Xie Y, Zhang S, Sun S, Zhu MJ, Sablani S, Tang J. Survivability of Salmonella and Enterococcus faecium in chili, cinnamon and black pepper powders during storage and isothermal treatments. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Recent development in low-moisture foods: Microbial safety and thermal process. Food Res Int 2022; 155:111072. [DOI: 10.1016/j.foodres.2022.111072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
|
18
|
Modeling the effect of protein and fat on the thermal resistance of Salmonella enterica Enteritidis PT 30 in egg powders. Food Res Int 2022; 155:111098. [DOI: 10.1016/j.foodres.2022.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022]
|
19
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Liu S, Wei X, Tang J, Qin W, Wu Q. Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34927484 DOI: 10.1080/10408398.2021.2016601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.
Collapse
Affiliation(s)
- Shuxiang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Wen Qin
- Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
21
|
Jiao S, Zhang H, Liao M, Hayouka Z, Jing P. Investigation of the potential direct and cross protection effects of sublethal injured Salmonella Typhimurium induced by radio frequency heating stress. Food Res Int 2021; 150:110789. [PMID: 34865804 DOI: 10.1016/j.foodres.2021.110789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
Many studies demonstrated that radio frequency (RF) was an effective pasteurization method for low-moisture foods (LMFs), and our previous study confirmed RF heating stress generated sublethal injured cells (SICs) of Salmonella enterica serovar Typhimurium (S. Typhimurium) in red pepper powder with initial aw ≥ 0.53. So this study investigated the potential direct protection and cross protection effects of the SICs of S. Typhimurium to multiple stresses, and analyzed fatty acid composition and cell morphology. Results showed that the SICs were repaired after incubating for 5 h, and there were no obvious direct and cross protection effects by exposing to different external stresses (heat, 15% ethanol, pH 3.0 acid buffer solution, 10% salt). According to the fatty acid composition analysis, no significant difference (p > 0.05) between the ratio of unsaturated to saturated fatty acids (UFA/SFA) was observed for SICs of S. Typhimurium and control cells, indicating the same membrane fluidity which can support the experimental results. This study investigated and confirmed there are no direct and cross protection effects for the SICs of S. Typhimurium induced by RF heating stress, and it would be helpful for deeply understand the response of pathogens under RF heating stress.
Collapse
Affiliation(s)
- Shunshan Jiao
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Hangjin Zhang
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Meiji Liao
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Pu Jing
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
22
|
Microbial contaminants in powdered infant formula: what is the impact of spray-drying on microbial inactivation? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Xu J, Xie Y, Paul NC, Roopesh MS, Shah DH, Tang J. Water sorption characteristics of freeze-dried bacteria in low-moisture foods. Int J Food Microbiol 2021; 362:109494. [PMID: 34895752 DOI: 10.1016/j.ijfoodmicro.2021.109494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Water sorption isotherms of bacteria reflect the water activity with the change of moisture content of bacteria at a specific temperature. The temperature-dependency of water activity change can help to understand the thermal resistance of bacteria during a thermal process. Thermal resistance of bacteria in low-moisture foods may differ significantly depending on the physiological characteristics of microorganisms, including cell structure, existence of biofilms, and growth state. Previous studies demonstrated that the incremental change of aw in bacterial cells during thermal treatments resulted in changes in their thermotolerance. In this study, a pathogen associated with low-moisture foods outbreaks, Salmonella Enteritidis PT30 (in planktonic and biofilm forms), and its validated surrogate, Enterococcus faecium, were lyophilized and their water sorption isotherms (WSI) at 20, 40, and 60 °C were determined by using a vapor sorption analyzer and simulated by the Guggenheim, Anderson and De Boer model (GAB). The published thermal death times at 80 °C (D80 °C-values) of these bacteria in low-moisture environments were related with their WSI-derived aw changes. The results showed that planktonic E. faecium and biofilms of Salmonella, exhibiting higher thermal resistance compared to the planktonic cultures of Salmonella, had a smaller increase in aw when thermally treated from 20 to 60 °C in sealed test cells. The computational modeling also showed that when temperature increased from 20 to 60 °C, with an increase in relative humidity from 10% to 60%, freeze-dried planktonic E. faecium and Salmonella cells would equilibrate to their surrounding environments in 0.15 s and 0.25 s, respectively, suggesting a rapid equilibration of bacterial cells to their microenvironment. However, control of bacteria with different cell structure and growth state would require further attentions on process design adjustment because of their different water sorption characteristics.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA; Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA.
| | - Yucen Xie
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA
| | - Narayan C Paul
- Texas A&M Veterinary Medical Diagnostic Laboratory, 483 Agronomy Rd, College Station, TCX 77843, USA
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 3-16 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6120, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, P.O. Box 646120, Pullman, WA 99164-6120, USA
| |
Collapse
|
24
|
|
25
|
Survival of Escherichia coli O157:H7 during Moderate Temperature Dehydration of Plant-Based Foods. Foods 2021; 10:foods10092162. [PMID: 34574271 PMCID: PMC8469793 DOI: 10.3390/foods10092162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
The effect of moderate-temperature (≤60 °C) dehydration of plant-based foods on pathogen inactivation is unknown. Here, we model the reduction of E. coli O157:H7 as a function of product-matrix, aw, and temperature under isothermal conditions. Apple, kale, and tofu were each adjusted to aw 0.90, 0.95, or 0.99 and inoculated with an E. coli O157:H7 cocktail, followed by isothermal treatment at 49, 54.5, or 60.0 °C. The decimal reduction time, or D-value, is the time required at a given temperature to achieve a 1 log reduction in the target microorganism. Modified Bigelow-type models were developed to determine D-values which varied by product type and aw level, ranging from 3.0–6.7, 19.3–55.3, and 45.9–257.4 min. The relative impact of aw was product dependent and appeared to have a non-linear impact on D-values. The root mean squared errors of the isothermal-based models ranged from 0.75 to 1.54 log CFU/g. Second, we performed dynamic drying experiments. While the isothermal results suggested significant microbial inactivation might be achieved, the dehydrator studies showed that the combination of low product temperature and decreasing aw in the pilot-scale system provided minimal inactivation. Pilot-scale drying at 60 °C only achieved reductions of 3.1 ± 0.8 log in kale and 0.67 ± 0.66 log in apple after 8 h, and 0.69 ± 0.67 log in tofu after 24 h. This illustrates the potential limitations of dehydration at ≤60 °C as a microbial kill step.
Collapse
|
26
|
Thermal inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in desiccated shredded coconut. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Dhaliwal HK, Gänzle M, Roopesh MS. Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica. Food Res Int 2021; 147:110548. [PMID: 34399525 DOI: 10.1016/j.foodres.2021.110548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Salmonella contamination of low-water activity (aw) foods poses a serious concern worldwide. The present study was conducted to assess the effects of drying conditions, food composition, and water activity on the desiccation tolerance and thermal resistance of S. Enteritidis FUA1946, S. Senftenberg ATCC43845 and S. Typhimurium ATCC13311 in pet food, binder formulation, and skim milk powder. The samples were wet inoculated with the individual Salmonella strains and were equilibrated to aw 0.33 and 0.75, followed by an isothermal treatment at 70 °C. The thermal inactivation data was fitted to the Weibull model. Irrespective of the aw, food composition and physical structure of the selected foods, strain S. Enteritidis FUA1946 displayed the highest desiccation and thermal resistance, followed by S. Senftenberg ATCC43845 and S. Typhimurium ATCC13311. The food matrix and strain type significantly (p < 0.05) influenced the thermal resistance of microorganisms in foods along with aw change during thermal treatments. To further study the effect of food composition, an additional set of experiments using dry inoculation of the resistant Salmonella strain in the low-aw foods was designed. Significant (p < 0.05) matrix-dependent interaction on Salmonella reduction was observed. The water adsorption isotherms of selected low-aw foods were measured at 20 and 70 °C to relate the thermal inactivation kinetics with the change in the aw. The characterization of thermal resistance of the Salmonella serovars in low-aw products with different compositions and aw in this study may be used for the validation of thermal challenge studies.
Collapse
Affiliation(s)
- Harleen Kaur Dhaliwal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
28
|
Desiccation and thermal resistance of Salmonella and Enterococcus faecium NRRL B-2354 in almond meal as impacted by water activity and storage temperature. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Park HW, Xu J, Balasubramaniam V, Snyder AB. The effect of water activity and temperature on the inactivation of Enterococcus faecium in peanut butter during superheated steam sanitation treatment. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Xu J, Janahar JJ, Park HW, Balasubramaniam V, Yousef AE. Influence of water activity and acidity on Bacillus cereus spore inactivation during combined high pressure-thermal treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Cheng T, Tang J, Yang R, Xie Y, Chen L, Wang S. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Thermal inactivation of Salmonella Enteritidis PT30 in ground cinnamon as influenced by water activity and temperature. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
|
34
|
Alshammari J, Dhowlaghar N, Xie Y, Xu J, Tang J, Sablani S, Zhu MJ. Survival of Salmonella and Enterococcus faecium in high fructose corn syrup and honey at room temperature (22 °C). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Dhowlaghar N, Zhu MJ. Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation. Crit Rev Food Sci Nutr 2021; 62:5886-5902. [PMID: 33798006 DOI: 10.1080/10408398.2021.1895055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salmonella has been implicated in multiple foodborne outbreaks and recalls associated with low water activity foods (LawF). To verify the effectiveness of a process against Salmonella in LawF, validation using a nonpathogenic surrogate strain is essential. Enterococcus faecium NRRL B-2354 strain has been used as a potential surrogate of Salmonella in different processing of LawF. However, the survival of Salmonella and E. faecium in LawF during food processing is a dynamic function of aw, food composition and structure, processing techniques, and other factors. This review assessed pertinent literature on the thermal and non-thermal inactivation of Salmonella and its presumable surrogate E. faecium in various LawF and provided an overview of its suitibility in different LawF. Overall, based on the D-values, survival/reduction, temperature/time to obtain 4 or 5-log reductions, most studies concluded that E. faecium is a suitable surrogate of Salmonella during LawF processing as its magnitude of resistance was slightly greater or equal (i.e., statistical similar) as compared to Salmonella. Studies also showed its unsuitability which either does not provide a proper margin of safety or being overly resistant and may compromise the quality and organoleptic properties of food. This review provides useful information and guidance for future validation studies of LawF.
Collapse
Affiliation(s)
- Nitin Dhowlaghar
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
36
|
Pérez-Reyes ME, Tang J, Barbosa-Cánovas GV, Zhu MJ. Influence of water activity and dry-heating time on egg white powders quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Isothermal inactivation of Salmonella, Listeria monocytogenes, and Enterococcus faecium NRRL B-2354 in peanut butter, powder infant formula, and wheat flour. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Pérez‐Reyes ME, Tang J, Zhu M, Barbosa‐Cánovas GV. The influence of elevated temperatures and composition on the water activity of egg powders. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco E. Pérez‐Reyes
- Department of Biological Systems Engineering Washington State University Pullman WA USA
| | - Juming Tang
- Department of Biological Systems Engineering Washington State University Pullman WA USA
| | - Mei‐Jun Zhu
- School of Food Science Washington State University Pullman WA USA
| | | |
Collapse
|
39
|
Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella enterica Serotype Enteritidis PT 30. Appl Environ Microbiol 2021; 87:AEM.02194-20. [PMID: 33158899 DOI: 10.1128/aem.02194-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. are resilient bacterial pathogens in low-moisture foods. There has been a general lack of understanding of critical factors contributing to the enhanced thermal tolerance of Salmonella spp. in dry environments. In this study, we hypothesized that the moisture content (XW ) of bacterial cells is a critical intrinsic factor influencing the resistance of Salmonella spp. to thermal inactivation. We selected Salmonella enterica serotype Enteritidis PT 30 to test this hypothesis. We first produced viable freeze-dried S. Enteritidis PT 30, conditioned the bacterial cells to different XW s (7.7, 9.2, 12.4, and 15.7 g water/100 g dry solids), and determined the thermal inactivation kinetics of those cells at 80°C. The results show that the D-value (the time required to achieve a 1-log reduction) decreased exponentially with increasing XW We further measured the water activities (aw) of the freeze-dried S. Enteritidis PT 30 as influenced by temperatures between 20 and 80°C. By using those data, we estimated the XW of S. Enteritidis PT 30 from the published papers that related the D-values of the same bacterial strain at 80°C with the aw of five different food and silicon dioxide matrices. We discovered that the logarithmic D-values of S. Enteritidis PT 30 in all those matrices also decreased linearly with increasing XW of the bacterial cells. The findings suggest that the amount of moisture in S. Enteritidis PT 30 is a determining factor of its ability to resist thermal inactivation. Our results may help future research into fundamental mechanisms for thermal inactivation of bacterial pathogens in dry environments.IMPORTANCE This study established a logarithmic relationship between the thermal death time (D-value) of S. Enteritidis PT 30 and the moisture content (XW ) of the bacterial cells by conducting thermal inactivation tests on freeze-dried S Enteritidis PT 30. We further verified this relationship using literature data for S. Enteritidis PT 30 in five low-moisture matrices. The findings suggest that the XW of S. Enteritidis PT 30, which is rapidly adjusted by microenvironmental aw, or relative humidity, during heat treatments, is the key intrinsic factor determining the thermal resistance of the bacterium. The quantitative relationships reported in this study may help guide future designs of industrial thermal processes for the control of S. Enteritidis PT 30 or other Salmonella strains in low-moisture foods. Our findings highlight a need for further fundamental investigation into the role of water in protein denaturation and the accumulation of compatible solutes during thermal inactivation of bacterial pathogens in dry environments.
Collapse
|
40
|
Ling L, Yang C, Ma W, Zhao Y, Feng S, Tu Y, Wang N, Li Z, Lu L. Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lijun Ling
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
- Northwest Normal University Lanzhou City China
| | - Caiyun Yang
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Wenxia Ma
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Yunhua Zhao
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Shenglai Feng
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Yixin Tu
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Nan Wang
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Zibin Li
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| | - Lu Lu
- College of Life Science Northwest Normal University Lanzhou P.R. China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou P.R. China
| |
Collapse
|
41
|
Lin B, Zhu Y, Zhang L, Xu R, Guan X, Kou X, Wang S. Effect of Physical Structures of Food Matrices on Heat Resistance of Enterococcus faecium NRRL-2356 in Wheat Kernels, Flour and Dough. Foods 2020; 9:foods9121890. [PMID: 33352900 PMCID: PMC7765854 DOI: 10.3390/foods9121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonpathogenic surrogate microorganisms, with a similar or slightly higher thermal resistance of the target pathogens, are usually recommended for validating practical pasteurization processes. The aim of this study was to explore a surrogate microorganism in wheat products by comparing the thermal resistance of three common bacteria in wheat kernels and flour. The most heat-resistant Enterococcus faecium NRRL-2356 rather than Salmonella cocktail and Escherichia coli ATCC 25922 was determined when heating at different temperature-time combinations at a fixed heating rate of 5 °C/min in a heating block system. The most heat-resistant pathogen was selected to investigate the influences of physical structures of food matrices. The results indicated that the heat resistance of E. faecium was influenced by physical structures of food matrices and reduced at wheat kernel structural conditions. The inactivation of E. faecium was better fitted in the Weibull distribution model for wheat dough structural conditions while in first-order kinetics for wheat kernel and flour structural conditions due to the changes of physical structures during heating. A better pasteurization effect could be achieved in wheat kernel structure in this study, which may provide technical support for thermal inactivation of pathogens in wheat-based food processing.
Collapse
Affiliation(s)
- Biying Lin
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Ruzhen Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: ; Tel.: +86-29-87092391; Fax: +86-29-87091737
| |
Collapse
|
42
|
Effects of radio frequency on physicochemical properties of powdered infant formula milk as compared with conventional thermal treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Rane B, Bridges DF, Wu VC. Gaseous antimicrobial treatments to control foodborne pathogens on almond kernels and whole black peppercorns. Food Microbiol 2020; 92:103576. [DOI: 10.1016/j.fm.2020.103576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/23/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
|
44
|
Machado Lopes S, Carmo da Silva D, César Tondo E. Effect of curing and heat treatments on the Salmonella survival and physicochemical properties of chicken egg yolk. Food Res Int 2020; 137:109680. [PMID: 33233257 DOI: 10.1016/j.foodres.2020.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Cured egg yolk is a novel gastronomic preparation, which a salt and sugar mixture gradually diffuses into the egg yolk, promoting its solidification from the exterior to the inner parts and greatly concentrates fat and flavor. This study was undertaken to analyze the effect of curing and its association with heat treatments on the Salmonella survival and physicochemical properties of chicken egg yolks. Contaminated egg yolks (8.4 log10 CFU/g) were covered by a mixture of sugar and salt and stored at 4.5 °C for curing, for 2, 24, 72 and 144 h. The cured yolks were subjected to the heat treatments: 62 °C for 30 min in temperature-controlled water circulator or at 80 °C for 3 h in oven. None of the treatments promoted the complete inactivation of Salmonella (detection limit of 100 CFU/g). However, Salmonella populations were significantly reduced (p ≤ 0.05) when heat processes were applied, reaching a maximum reduction of 5.6 log10 CFU/g when the yolks were cured for 2 h and subsequently treated in temperature-controlled water circulator (62 °C for 30 min). This treatment kept the physicochemical properties similar to the ones without heat treatment, while the oven treatment showed considerable changes on texture, water activity and visual color. In conclusion, the use of curing time of 2 h followed by temperature-controlled water circulator process can improve the safety of cured egg yolks made from high quality eggs. However, other methods should be considered and analyzed to promote a complete inactivation of Salmonella.
Collapse
Affiliation(s)
- Stefani Machado Lopes
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campus do Vale, Agronomia, CEP: 91501-970 Porto Alegre, RS, Brazil.
| | - Danielle Carmo da Silva
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campus do Vale, Agronomia, CEP: 91501-970 Porto Alegre, RS, Brazil
| | - Eduardo César Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves 9.500, prédio 43212, Campus do Vale, Agronomia, CEP: 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Cielecka-Piontek J, Dziedziński M, Szczepaniak O, Kobus-Cisowska J, Telichowska A, Szymanowska D. Survival of commercial probiotic strains and their effect on dark chocolate synbiotic snack with raspberry content during the storage and after simulated digestion. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
|
47
|
Zhu M, Song X, Shen X, Tang J. Listeria monocytogenes in Almond Meal: Desiccation Stability and Isothermal Inactivation. Front Microbiol 2020; 11:1689. [PMID: 32849354 PMCID: PMC7427469 DOI: 10.3389/fmicb.2020.01689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Almond are among the most consumed tree nuts and used in a variety of food products. Recent almond butter recalls due to potential contamination of Listeria monocytogenes highlight the need to control L. monocytogenes in almond products. The objectives of this study were to examine the stability of L. monocytogenes in almond meal during extended storage and analyze thermal resistance of L. monocytogenes in almond meal of controlled moisture contents or water activity (aw) using thermal death time (TDT) cells and thermal water activity (TWA) cells, respectively. L. monocytogenes maintained a stable population in almond meal for 44–48 weeks at 4°C regardless of aw; however, we observed about 1.69 and 2.14 log10 colony-forming units (CFU)/g reduction of L. monocytogenes in aw 0.25 and 0.45 almond meal over 44 to 48 weeks of storage at 22°C. Under all test conditions using either TDT or TWA cells, the inactivation kinetics of L. monocytogenes in almond meal fitted the log-linear model well; thermal resistance of L. monocytogenes in almond meal was inversely related to the aw of samples. D75-/D80-values of L. monocytogenes in aw 0.25 and 0.45 almond meal obtained using TDT cells were 47.6/22.0 versus 17.2/11.0 min, respectively. D80-, D85-, and D90-values of L. monocytogenes in aw 0.25 almond meal obtained using TWA cells were 59.5 ± 2.1, 27.7 ± 0.7, and 13.2 ± 1.1 min, respectively, in contrast to 22.0 ± 1.1, 10.6 ± 0.2, and 4.6 ± 0.4 min obtained using TDT cells. The z-value of L. monocytogenes in aw 0.25 almond meal was not affected by TWA and TDT cell type (15.4–15.5°C), whereas z-value of L. monocytogenes in aw 0.45 almond meal was 10°C higher than that in aw 0.25 almond meal. This study contributes to our understanding of L. monocytogenes in nuts and impacts of aw on the development of thermal resistance in low-moisture foods.
Collapse
Affiliation(s)
- Meijun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xia Song
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
48
|
Gautam B, Govindan BN, Gӓnzle M, Roopesh MS. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods. Int J Food Microbiol 2020; 334:108813. [PMID: 32841809 DOI: 10.1016/j.ijfoodmicro.2020.108813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/23/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Low-moisture foods (LMF with water activity, aw < 0.85) including pet foods and black pepper powder have consistently been associated with foodborne disease caused by Salmonella enterica. Increased heat resistance and prolonged survival at low-moisture conditions, however, remain major challenges to achieve effective inactivation of Salmonella in low-moisture foods. At low water activity (aw) conditions, heat resistance of Salmonella is greatly enhanced when compared to high aw conditions. This study aimed to quantify the effect of aw on the heat resistance of Salmonella enterica in pet food pellets and black pepper powder. Pet food pellets were inoculated with two strains of heat resistant S. enterica and black pepper powder was inoculated with a 5-strain cocktail of Salmonella. Both inoculated food samples were equilibrated at 0.33, 0.54, and 0.75 aw in controlled humidity chambers. Inoculated pet food pellets and black pepper powder in closed aluminum cells were heat treated at specific temperatures for selected times. The results showed that the Weibull model fitted well the inactivation data. At a specific temperature, the rate of inactivation increased with the increase in the aw from 0.33 to 0.75, and the 3-log reduction times decreased for Salmonella in both food samples with the increase in aw. Water adsorption isotherms of pet food pellets and black pepper powder at initial and treatment temperatures were developed to understand the change in aw during heat treatments. The change in aw during heat treatment was dependent on the type of food matrix, which possibly influenced the thermal inactivation of Salmonella in pet food pellets and black pepper powder. The quantitative analysis of heat reduction of Salmonella with respect to aw aids in selection of the appropriate initial aw to develop effective heat treatment protocols for adequate reduction of Salmonella in pet foods and black pepper powder.
Collapse
Affiliation(s)
- Bina Gautam
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Byju N Govindan
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, 219 Hodson Hall, St. Paul, MN 55108, USA
| | - Michael Gӓnzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
49
|
|
50
|
Zhang Y, Xie Y, Tang J, Wang S, Wang L, Zhu G, Li X, Liu Y. Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|