1
|
Ji Z, Liu H, Li J, Wang Y. Comprehensive quality evaluation of dried boletus slices based on fingerprinting and chemometrics. J Pharm Biomed Anal 2025; 252:116505. [PMID: 39388866 DOI: 10.1016/j.jpba.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Mushrooms not only serve as a source of a wide range of nutrients in the structure of the human diet, but they have also received a great deal of attention in the field of biopharmaceuticals because of their wide range of medicinal benefits. Rapid quality certification of boletus (porcini) mushrooms is particularly important as a health food and as a potential source of medicines before purchase and production. Infrared (IR) spectroscopy is commonly used for rapid qualitative and quantitative analyses of foods and herbs. The Ultra Performance Liquid Chromatography (UPLC) combined with systematic fingerprinting quantification was used to analyze the quality consistency of Boletus edulis (B. edulis) from different geographic sources, and a method based on Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometrics for origin traceability and rapid prediction of nucleoside quality marker content of B. edulis dried slices was developed with the aim of achieving rapid, lossless, high-throughput and green quality authentication of raw materials for pharmaceutical products.
Collapse
Affiliation(s)
- Zhiyi Ji
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, China
| | - Jieqing Li
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China.
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
2
|
Tarhan İ, Kestek HM. Investigation of new analysis methods for simultaneous and rapid identification of five different microplastics using ATR-FTIR spectroscopy and chemometrics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125043. [PMID: 39343349 DOI: 10.1016/j.envpol.2024.125043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastic (MP) pollution in water has become one of the most important global problems of our time. The development of appropriate and rapid analysis techniques is of great importance at the beginning of the studies aimed at solving this problem. In the presented study, in order to perform the qualitative and quantitative analysis of MP forms of polyamide (PA), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET), which are known to be most abundant in water, in a fast and easy way, new Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy methods were tried to be developed by utilizing chemometric methods. While principal component analysis (PCA) was applied for qualitative analyses, partial least squares (PLS) models were created for quantitative analyses. Raw, 1st, and 2nd order derivatives of all spectra and their spectra with different levels of smoothing points were taken and 24 different chemometric models were created for each MP. In interpreting the statistical performances of the developed PCA and PLS models, different parameters were used. According to the obtained results, the qualitative discrimination of all polymer types was successfully achieved. It was determined that the PLS models developed for the quantitative determination of mixtures consisting of different concentrations of MP types could not be at the desired level. However, it was determined that the PLS models developed for PA, PE, PP, and PET, where the normal spectrum was used, could give quantitatively accurate results, albeit partially.
Collapse
Affiliation(s)
- İsmail Tarhan
- Selçuk University, Faculty of Science, Department of Biochemistry, Konya, Turkey.
| | - Hafize Merve Kestek
- Selçuk University, Faculty of Science, Department of Biochemistry, Konya, Turkey
| |
Collapse
|
3
|
Ozen B, Cavdaroglu C, Tokatli F. Trends in authentication of edible oils using vibrational spectroscopic techniques. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4216-4233. [PMID: 38899503 DOI: 10.1039/d4ay00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The authentication of edible oils has become increasingly important for ensuring product quality, safety, and compliance with regulatory standards. Some prevalent authenticity issues found in edible oils include blending expensive oils with cheaper substitutes or lower-grade oils, incorrect labeling regarding the oil's source or type, and falsely stating the oil's origin. Vibrational spectroscopy techniques, such as infrared (IR) and Raman spectroscopy, have emerged as effective tools for rapidly and non-destructively analyzing edible oils. This review paper offers a comprehensive overview of recent advancements in using vibrational spectroscopy for authenticating edible oils. The fundamental principles underlying vibrational spectroscopy are introduced and chemometric approaches that enhance the accuracy and reliability of edible oil authentication are summarized. Recent research trends highlighted in the review include authenticating newly introduced oils, identifying oils based on their specific origins, adopting handheld/portable spectrometers and hyperspectral imaging, and integrating modern data handling techniques into the use of vibrational spectroscopic techniques for edible oil authentication. Overall, this review provides insights into the current state-of-the-art techniques and prospects for utilizing vibrational spectroscopy in the authentication of edible oils, thereby facilitating quality control and consumer protection in the food industry.
Collapse
Affiliation(s)
- Banu Ozen
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| | - Cagri Cavdaroglu
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| | - Figen Tokatli
- Izmir Institute of Technology, Department of Food Engineering, Urla, Izmir, Turkiye.
| |
Collapse
|
4
|
Tugrul F, Akin Geyik G, Yalinbaş Kaya B, Peker Cengiz B, Karuk Elmas SN, Yilmaz I, Arslan FN. A biospectroscopic approach toward colorectal cancer diagnosis from bodily fluid samples via ATR-MIR spectroscopy combined with multivariate data analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123342. [PMID: 37688884 DOI: 10.1016/j.saa.2023.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this study, a biospectroscopic approach was reported for the detection of spectral changes and biomarkers for the diagnosis of colorectal cancer (CC) cases from different bodily fluids (blood plasma, blood serum, saliva and colonoscopy disinfection/wash fluids) by using attenuated total reflection-mid infrared (ATR-MIR) spectroscopy. To recognize the molecular level changes in the spectral characteristics of CC and their healthy/control (CH) groups, different multivariate data analyses (HCA, LDA, PCA and SIMCA) were successfully performed over the data of ATR-MIR spectroscopy. Two hundred specimens were characterized in detail over the data of spectral regions (4000-650 cm-1 and regions V-XXII). The findings revealed that significant changes were clearly observed in the concentrations of lipid, protein, nucleic acid and carbohydrate biomolecules for cancer cases based upon their necessity to overcome energy requirements. Supervised multivariate data methodology SIMCA, presented an excellent classification for the studied groups; similarly 100% of the specimens from different bodily fluids were correctly classified by supervised methodology LDA. As a result, the developed ATR-MIR methodology for the classification of CC and their healthy groups highlighted a rapid cancer diagnosis approach from different bodily fluids; therefore, it could be guide to make well decision before histopathological assessment and to screen CC populations existing in society.
Collapse
Affiliation(s)
- Fuzuli Tugrul
- Eskişehir City Hospital, Clinic of Radiation Oncology, 26080 Eskisehir, Turkey
| | - Gonul Akin Geyik
- Karamanoglu Mehmetbey University, K.O. Science Faculty, Department of Chemistry, 70100 Karaman, Turkey
| | | | - Betul Peker Cengiz
- Eskişehir Yunus Emre State Hospital, Clinic of Medical Pathology, 26190 Eskisehir, Turkey
| | - Sukriye Nihan Karuk Elmas
- Karamanoglu Mehmetbey University, K.O. Science Faculty, Department of Chemistry, 70100 Karaman, Turkey; Istanbul University-Cerrahpaşa, Pharmacy Faculty, Department of Analytical Chemistry, 34500 Istanbul, Turkey
| | - Ibrahim Yilmaz
- Karamanoglu Mehmetbey University, K.O. Science Faculty, Department of Chemistry, 70100 Karaman, Turkey.
| | - Fatma Nur Arslan
- Karamanoglu Mehmetbey University, K.O. Science Faculty, Department of Chemistry, 70100 Karaman, Turkey.
| |
Collapse
|
5
|
Galvan D, de Aguiar LM, Bona E, Marini F, Killner MHM. Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Anal Chim Acta 2023; 1273:341495. [PMID: 37423658 DOI: 10.1016/j.aca.2023.341495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Low-field nuclear magnetic resonance (NMR) has three general modalities: spectroscopy, imaging, and relaxometry. In the last twelve years, the modality of spectroscopy, also known as benchtop NMR, compact NMR, or just low-field NMR, has undergone instrumental development due to new permanent magnetic materials and design. As a result, benchtop NMR has emerged as a powerful analytical tool for use in process analytical control (PAC). Nevertheless, the successful application of NMR devices as an analytical tool in several areas is intrinsically linked to its coupling with different chemometric methods. This review focuses on the evolution of benchtop NMR and chemometrics in chemical analysis, including applications in fuels, foods, pharmaceuticals, biochemicals, drugs, metabolomics, and polymers. The review also presents different low-resolution NMR methods for spectrum acquisition and chemometric techniques for calibration, classification, discrimination, data fusion, calibration transfer, multi-block and multi-way.
Collapse
Affiliation(s)
- Diego Galvan
- Chemistry Institute, Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil; Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Campo Mourão, 87301-899, Campo Mourão, PR, Brazil; Post-Graduation Program of Chemistry (PPGQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, 80230-901, Curitiba, PR, Brazil
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mário Henrique M Killner
- Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil
| |
Collapse
|
6
|
Oxidative Stability of Cottonseed Butter Products under Accelerated Storage Conditions. Molecules 2023; 28:molecules28041599. [PMID: 36838586 PMCID: PMC9963269 DOI: 10.3390/molecules28041599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cottonseed is a natural product of cotton (Gossypium spp.) crops. This work evaluated the oxidative stability of cottonseed butters through accelerated autoxidation by storage at 60 °C for 25 days. Three oxidative stability parameter values (peroxide value, p-anisidine value, and total oxidation value) were monitored over the storage time. These chemical measurements revealed that the storage stability of the butter products was dominated by primary oxidation of lipid (oil) components, while the secondary oxidation levels were relatively unchanged over the storage time. An analysis of the tocopherols (natural oxidants in cottonseed) suggested not only the protection function of the molecules against oxidation of the cottonseed butter during storage, but also the dynamic mechanism against the primary oxidation of lipid components. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) data confirmed no changes in the major C functional groups of cottonseed butters over the storage time. On the other hand, characteristic minor peaks of conjugated dienes and trienes related to lipid oxidation were impacted by the accelerated storage. As each day of accelerated oxidation at 60 °C is equivalent to 16 days of storage at 20 °C, observations in this work should have reflected the oxidative stability behaviors of the cottonseed butters after about 13 months of shelf storage under ambient storage conditions. Thus, these data that were collected under the accelerated oxidation testing would be useful not only to create a better understanding of the autooxidation mechanism of lipid molecules in cottonseed butters, but also in developing or recommending appropriate storage conditions for cottonseed end products to prevent them from quality degradation.
Collapse
|
7
|
Rozali NL, Azizan KA, Singh R, Syed Jaafar SN, Othman A, Weckwerth W, Ramli US. Fourier transform infrared (FTIR) spectroscopy approach combined with discriminant analysis and prediction model for crude palm oil authentication of different geographical and temporal origins. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Surya V, Senthilselvi A. An Optimal Faster Region-Based Convolutional Neural Network for Oil Adulteration Detection. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Bian X, Wang Y, Wang S, Johnson JB, Sun H, Guo Y, Tan X. A Review of Advanced Methods for the Quantitative Analysis of Single Component Oil in Edible Oil Blends. Foods 2022; 11:foods11162436. [PMID: 36010436 PMCID: PMC9407567 DOI: 10.3390/foods11162436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Edible oil blends are composed of two or more edible oils in varying proportions, which can ensure nutritional balance compared to oils comprising a single component oil. In view of their economical and nutritional benefits, quantitative analysis of the component oils in edible oil blends is necessary to ensure the rights and interests of consumers and maintain fairness in the edible oil market. Chemometrics combined with modern analytical instruments has become a main analytical technology for the quantitative analysis of edible oil blends. This review summarizes the different oil blend design methods, instrumental techniques and chemometric methods for conducting single component oil quantification in edible oil blends. The aim is to classify and compare the existing analytical techniques to highlight suitable and promising determination methods in this field.
Collapse
Affiliation(s)
- Xihui Bian
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd., Binzhou 256500, China
- Correspondence: ; Tel./Fax: +86-22-83955663
| | - Yao Wang
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Shuaishuai Wang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Shandong Chambroad Holding Group Co., Ltd., Binzhou 256500, China
| | - Joel B. Johnson
- School of Health, Medical & Applied Sciences, Central Queensland University, Bruce Hwy, North Rockhampton, QLD 4701, Australia
| | - Hao Sun
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Yugao Guo
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoyao Tan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
10
|
Embaby HE, Miyakawa T, Hachimura S, Muramatsu T, Nara M, Tanokura M. Physical and chemical properties of nabak (Zizyphus spina-christi) seed kernel and sweet pepper (Capsicum annuum L.) seed oils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2660-2666. [PMID: 34689330 DOI: 10.1002/jsfa.11605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nabak seed kernels and sweet pepper seeds, which are separated from the fruits and discarded as waste after processing or consumption, contain high levels of oils (30.19% and 19.57%, respectively). The chemical and thermal characteristics of nabak seed kernel oil (NSO) and sweet pepper seed oil (PSO) were investigated in this study. RESULTS The NSO and PSO contained high levels of unsaturated fatty acids (84.1% and 86.5%, respectively), and the major fatty acid was oleic acid (57.3%) in NSO, but it was linoleic acid (69.4%) in PSO. The triacylglycerol (TAG) profiles show that NSO contained ten TAG species, three of which represented 87.1%, namely C54:3, C52:2 and C54:4, and triolein was the dominant (OOO, 47.0%). Pepper seed oil contained nine TAG molecular species, four of which represented 93.6%, namely C54:6, C52:4, C54:4 and C52:5, and trilinolein was dominant (LLL, 44.0%). The differential scanning calorimetry (DSC) analysis of NSO revealed that three exothermal peaks were detected during cooling, two endothermal peaks were detected during melting, and the major peak occurred at a low temperature. For PSO, three exothermal peaks were detected during cooling, three peaks were detected (one of them was exothermal) during melting, and the major peaks were observed at low temperatures. Fourier transform infrared (FTIR) spectra indicated that NSO and PSO did not contain peroxides or trans fatty acids, but they did contain low concentrations of free fatty acids. CONCLUSION This study offers a scientific basis for the use of NSO and PSO as new sources of edible oils for food applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hassan Elsayed Embaby
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomonari Muramatsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayuki Nara
- Department of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Qualitative and Quantitative Detection of Monofloral, Polyfloral, and Honeydew Honeys Adulteration by Employing Mid-Infrared Spectroscopy and Chemometrics. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Evaluation of Portable Vibrational Spectroscopy Sensors as a Tool to Detect Black Cumin Oil Adulteration. Processes (Basel) 2022. [DOI: 10.3390/pr10030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Black cumin oil adulteration has become a concern because it has numerous health benefits and a high price. Therefore, a simple, non-destructive, and rapid method to identify adulterations in black seed oil is necessary to protect the quality of the oils. This study aimed to perform a non-invasive method to authenticate black cumin oil by portable FT-NIR, FT-MIR, and Raman spectrometers. Spectra were collected with portable devices and analyzed using Soft Independent Modelling of Class Analogy (SIMCA) to generate a classification model to identify pure black cumin oil and partial least squares regression (PLSR) to predict the adulterant levels. For confirmation, the fatty acid profile of the oils was determined by gas chromatography (GC). SIMCA and PLSR models provided a very high performance in detecting adulterated samples in all portable units. These portable units showed great potential for rapid and non-destructive monitoring to identify adulterated black cumin oils.
Collapse
|
13
|
Akin Geyik G, Peker Cengiz B, Tugrul F, Karuk Elmas SN, Yilmaz I, Arslan FN. A rapid diagnostic approach for gastric and colon cancers via Fourier transform mid-infrared spectroscopy coupled with chemometrics from paraffin-embedded tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120619. [PMID: 34810101 DOI: 10.1016/j.saa.2021.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
This paper describes the feasibility of Attenuated total reflection-Fourier transform mid-infrared (ATR-MIR) spectroscopy method coupled with chemometrics for the rapid diagnostic approach and screening spectral changes for gastric and colon cancers from paraffin-embedded tissues. A total number of 82 tissue samples were analyzed by a simple ATR-MIR method combined with PCA, HCA, SIMCA and LDA methodologies. Spectral analyses showed significant differences for the molecular contents particularly about the lipid, nucleic acid, protein and other biomolecules in the samples of gastric cancer (GC) and colon cancer (CC) groups from their control/healthy groups. Significant changes in the characteristic of these molecules were only observed for cancer groups based upon the increment in their biosynthesis, and they could be utilized as diagnostic spectral biomarkers. Under the optimum conditions, SIMCA provided excellent classification for diseased and control groups, with 5% significance level. As well, 97.75% of the studied tissue samples were correctly discriminated on the basis of their origin by LDA. Consequently, the findings of this study highlighted the rapid diagnosis of gastric and colon cancer cases from paraffin-embedded tissues via ATR-MIR spectroscopy complemented with chemometrics.
Collapse
Affiliation(s)
- Gonul Akin Geyik
- Department of Chemistry, Faculty of Science, University of Karamanoglu Mehmetbey, 70100 Karaman, Turkey
| | - Betul Peker Cengiz
- Clinic of Medical Pathology, Eskişehir Yunus Emre State Hospital, 26190 Eskisehir, Turkey
| | - Fuzuli Tugrul
- Clinic of Radiation Oncology, Eskişehir City Hospital, 26080 Eskisehir, Turkey
| | - Sukriye Nihan Karuk Elmas
- Department of Chemistry, Faculty of Science, University of Karamanoglu Mehmetbey, 70100 Karaman, Turkey
| | - Ibrahim Yilmaz
- Department of Chemistry, Faculty of Science, University of Karamanoglu Mehmetbey, 70100 Karaman, Turkey.
| | - Fatma Nur Arslan
- Department of Chemistry, Faculty of Science, University of Karamanoglu Mehmetbey, 70100 Karaman, Turkey.
| |
Collapse
|
14
|
Rifna EJ, Pandiselvam R, Kothakota A, Subba Rao KV, Dwivedi M, Kumar M, Thirumdas R, Ramesh SV. Advanced process analytical tools for identification of adulterants in edible oils - A review. Food Chem 2022; 369:130898. [PMID: 34455326 DOI: 10.1016/j.foodchem.2021.130898] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
This review summarizes the use of spectroscopic processes-based analytical tools coupled with chemometric techniques for the identification of adulterants in edible oil. Investigational approaches of process analytical tools such asspectroscopy techniques, nuclear magnetic resonance (NMR), hyperspectral imaging (HSI), e-tongue and e-nose combined with chemometrics were used to monitor quality of edible oils. Owing to the variety and intricacy of edible oil properties along with the alterations in attributes of the PAT tools, the reliability of the tool used and the operating factors are the crucial components which require attention to enhance the efficiency in identification of adulterants. The combination of process analytical tools with chemometrics offers a robust technique with immense chemotaxonomic potential. These involves identification of adulterants, quality control, geographical origin evaluation, process evaluation, and product categorization.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India.
| | - K V Subba Rao
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Rohit Thirumdas
- Department of Food Process Technology, College of Food Science and Technology, PJTSAU, Telangana, India
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India
| |
Collapse
|
15
|
Chemical Composition and Thermogravimetric Behaviors of Glanded and Glandless Cottonseed Kernels. Molecules 2022; 27:molecules27010316. [PMID: 35011547 PMCID: PMC8747074 DOI: 10.3390/molecules27010316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 11/17/2022] Open
Abstract
Common “glanded” (Gd) cottonseeds contain the toxic compound gossypol that restricts human consumption of the derived products. The “glandless” (Gl) cottonseeds of a new cotton variety, in contrast, show a trace gossypol content, indicating the great potential of cottonseed for agro-food applications. This work comparatively evaluated the chemical composition and thermogravimetric behaviors of the two types of cottonseed kernels. In contrast to the high gossypol content (3.75 g kg−1) observed in Gd kernels, the gossypol level detected in Gl kernels was only 0.06 g kg−1, meeting the FDA’s criteria as human food. While the gossypol gland dots in Gd kernels were visually observed, scanning electron microcopy was not able to distinguish the microstructural difference between ground Gd and Gl samples. Chemical analysis and Fourier transform infrared (FTIR) spectroscopy showed that Gl kernels and Gd kernels had similar chemical components and mineral contents, but the former was slightly higher in protein, starch, and phosphorus contents. Thermogravimetric (TG) processes of both kernels and their residues after hexane and ethanol extraction were based on three stages of drying, de-volatilization, and char formation. TG-FTIR analysis revealed apparent spectral differences between Gd and Gl samples, as well as between raw and extracted cottonseed kernel samples, indicating that some components in Gd kernels were more susceptible to thermal decomposition than Gl kernels. The TG and TG-FTIR observations suggested that the Gl kernels could be heat treated (e.g., frying and roasting) at an optimal temperature of 140–150 °C for food applications. On the other hand, optimal pyrolysis temperatures would be much higher (350–500 °C) for Gd cottonseed and its defatted residues for non-food bio-oil and biochar production. The findings from this research enhance the potential utilization of Gd and Gl cottonseed kernels for food applications.
Collapse
|
16
|
Thangaraju S, Modupalli N, Natarajan V. Food Adulteration and Its Impacts on Our Health/Balanced Nutrition. Food Chem 2021. [DOI: 10.1002/9781119792130.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Embaby HE, Miyakawa T, Hachimura S, Muramatsu T, Nara M, Tanokura M. Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil. Food Chem 2021; 366:130645. [PMID: 34325243 DOI: 10.1016/j.foodchem.2021.130645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 11/04/2022]
Abstract
The chemical and thermal characteristics of goldenberry pomace oil (GPO) and goldenberry seed oil (GSO) were investigated. GPO and GSO contained high levels of unsaturated fatty acids (90.1% and 85.1%, respectively), and the major fatty acid was linoleic (62.0% and 72.8%, respectively). Additionally, GPO contained eleven triacylglycerol (TAG) species, three of which represented 82.7%, namely C54:6, C54:4 and C52:4, and trilinolein was the dominant one (35.5%). GSO contained nine TAG species, two of which represented 80.3%, namely C54:6 and C52:4, and trilinolein was dominant (53.3%). The DSC analysis of GPO and GSO revealed that three exothermal peaks were detected during cooling. Three endothermal peaks (one of which is exothermal for GSO) were detected during melting, and the most significant peaks occurred at low temperatures. FTIR spectra indicated that GPO and GSO did not contain peroxides or trans fatty acids, but they did contain low concentrations of free fatty acids.
Collapse
Affiliation(s)
- Hassan Elsayed Embaby
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tomonari Muramatsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masayuki Nara
- Department of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba 272-0827, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
18
|
The use of Raman spectroscopy and chemometrics for the discrimination of lab-produced, commercial, and adulterated cold-pressed oils. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Mousa MAA, Wang Y, Antora SA, Al-Qurashi AD, Ibrahim OHM, He HJ, Liu S, Kamruzzaman M. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils. Crit Rev Food Sci Nutr 2021; 62:8009-8027. [PMID: 33977844 DOI: 10.1080/10408398.2021.1922872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Authenticity and adulteration detection are primary concerns of various stakeholders, such as researchers, consumers, manufacturers, traders, and regulatory agencies. Traditional approaches for authenticity and adulteration detection in edible oils are time-consuming, complicated, laborious, and expensive; they require technical skills when interpreting the data. Over the last several years, much effort has been spent in academia and industry on developing vibrational spectroscopic techniques for quality, authenticity, and adulteration detection in edible oils. Among them, Fourier transforms infrared (FT-IR) spectroscopy has gained enormous attention as a green analytical technique for the rapid monitoring quality of edible oils at all stages of production and for detecting and quantifying adulteration and authenticity in edible oils. The technique has several benefits such as rapid, precise, inexpensive, and multi-analytical; hence, several parameters can be predicted simultaneously from the same spectrum. Associated with chemometrics, the technique has been successfully implemented for the rapid detection of adulteration and authenticity in edible oils. After presenting the fundamentals, the latest research outcomes in the last 10 years on quality, authenticity, and adulteration detection in edible oils using FT-IR spectroscopy will be highlighted and described in this review. Additionally, opportunities, challenges, and future trends of FT-IR spectroscopy will also be discussed.
Collapse
Affiliation(s)
- Magdi A A Mousa
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Vegetables, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Yangyang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Salma Akter Antora
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, USA
| | - Adel D Al-Qurashi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omer H M Ibrahim
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Ornamental Plants and Landscape Gardening, Faculty of Agriculture, Assiut University, Egypt
| | - Hong-Ju He
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, China
| | - Mohammed Kamruzzaman
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
20
|
He Z, Nam S, Fang DD, Cheng HN, He J. Surface and Thermal Characterization of Cotton Fibers of Phenotypes Differing in Fiber Length. Polymers (Basel) 2021; 13:994. [PMID: 33804984 PMCID: PMC8037818 DOI: 10.3390/polym13070994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Cotton is one of the most important and widely grown crops in the world. Understanding the synthesis mechanism of cotton fiber elongation can provide valuable tools to the cotton industry for improving cotton fiber yield and quality at the molecular level. In this work, the surface and thermal characteristics of cotton fiber samples collected from a wild type (WT) and three mutant lines (Li1, Li2-short, Li2-long, Li2-mix, and liy) were comparatively investigated. Microimaging revealed a general similarity trend of WT ≥ Li2-long ≈ Li2-mix > Li1 > Li2 short ≈ liy with Ca detected on the surface of the last two. Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and thermogravimetric measurements also showed that Li2-short and liy were more similar to each other, and Li2-long and Li2-mix closer to WT while Li1 was quite independent. FT-IR results further demonstrated that wax and amorphous cellulose were co-present in fiber structures during the fiber formation processes. The correlation analysis found that the FT-IR-based maturity parameter was well correlated (p ≤ 0.05) to the onset decomposition temperature and all three weight-loss parameters at onset, peak, and end decomposition stages, suggesting that the maturity degree is a better parameter than crystallinity index (CI) and other FT-IR parameters that reflect the thermal stability of the cotton fiber. In summary, this work demonstrated that genetic mutation altered the surface and thermal characteristics in the same way for Li2-short and liy, but with different mechanisms for the other three mutant cotton fiber samples.
Collapse
Affiliation(s)
- Zhongqi He
- USDA-ARS, Southern Regional Research Center, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA; (S.N.); (D.D.F.); (H.N.C.)
| | - Sunghyun Nam
- USDA-ARS, Southern Regional Research Center, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA; (S.N.); (D.D.F.); (H.N.C.)
| | - David D. Fang
- USDA-ARS, Southern Regional Research Center, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA; (S.N.); (D.D.F.); (H.N.C.)
| | - Huai N. Cheng
- USDA-ARS, Southern Regional Research Center, 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA; (S.N.); (D.D.F.); (H.N.C.)
| | - Jibao He
- Coordinated Instrument Facility, Tulane University, New Orleans, LA 70118, USA;
| |
Collapse
|
21
|
Abdelhameed RM, Alzahrani E, Shaltout AA, Emam HE. Temperature-controlled-release of essential oil via reusable mesoporous composite of microcrystalline cellulose and zeolitic imidazole frameworks. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Dogruer I, Uyar HH, Uncu O, Ozen B. Prediction of chemical parameters and authentication of various cold pressed oils with fluorescence and mid-infrared spectroscopic methods. Food Chem 2020; 345:128815. [PMID: 33333358 DOI: 10.1016/j.foodchem.2020.128815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
It was aimed to compare the performances of two spectroscopic methods, fluorescence and mid-infrared spectroscopy, in terms of their adulteration detection and estimation of several chemical properties for various cold pressed seed oils. Spectroscopic profiles, fatty acid, free fatty acid and total phenol contents of pumpkin seed, grape seed, black cumin oil, and sesame seed oils were determined and these oils were mixed with sunflower oil at 1-50% (v/v). Both spectroscopic techniques provided comparable results for determination of adulteration of each oil type and the most successful prediction was obtained for pumpkin seed oil at levels >%1. Combined data set of oils resulted in successful quantification of their free fatty acid value, total phenol and major fatty acids contents with both spectroscopic methods regardless of oil type. Both techniques could be used as reliable, fast and environmentally friendly alternatives in the analyses of different types of seed oils.
Collapse
Affiliation(s)
- Ilgin Dogruer
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey
| | - H Hilal Uyar
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey
| | - Oguz Uncu
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey
| | - Banu Ozen
- Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, Turkey.
| |
Collapse
|
23
|
Kotecka-Majchrzak K, Sumara A, Fornal E, Montowska M. Identification of species-specific peptide markers in cold-pressed oils. Sci Rep 2020; 10:19971. [PMID: 33203972 PMCID: PMC7672054 DOI: 10.1038/s41598-020-76944-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
In recent years, cold-pressed vegetable oils have become very popular on the global market. Therefore, new versatile methods with high sensitivity and specificity are needed to find and combat fraudulent practices. The objective of this study was to identify oilseed species-specific peptide markers, using proteomic techniques, for authentication of 10 cold-pressed oils. In total, over 380 proteins and 1050 peptides were detected in the samples. Among those peptides, 92 were found to be species-specific and unique to coconut, evening primrose, flax, hemp, milk thistle, nigella, pumpkin, rapeseed, sesame, and sunflower oilseed species. Most of the specific peptides were released from major seed storage proteins (11 globulins, 2S albumins), and oleosins. Additionally, the presence of allergenic proteins in the cold-pressed oils, including pumpkin Cuc ma 5, sunflower Hel a 3, and six sesame allergens (Ses i 1, Ses i 2, Ses i 3, Ses i 4, Ses i 6, and Ses i 7) was confirmed in this study. This study provides novel information on specific peptides that will help to monitor and verify the declared composition of cold-pressed oil as well as the presence of food allergens. This study can be useful in the era of widely used unlawful practices.
Collapse
Affiliation(s)
- Klaudia Kotecka-Majchrzak
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznan, Poland.
| |
Collapse
|
24
|
Tarhan İ. A comparative study of ATR-FTIR, UV-visible and fluorescence spectroscopy combined with chemometrics for quantification of squalene in extra virgin olive oils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118714. [PMID: 32717649 DOI: 10.1016/j.saa.2020.118714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/10/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), ultraviolet-visible (UV-Vis), and fluorescence (FL) spectroscopic techniques, combined with partial least-square (PLS) regression with various spectral derivatization methods were tested for the quantitative determination of squalene content of extra virgin olive oils (EVOOs). A set of 90 calibration standards covering a wide range of squalene (3.25-12.54 mg/kg) was used to build up the calibration models. The root mean square error of calibration (RMSEC), the root mean square error of cross-validation (RMSECV), and the root mean square error of prediction (RMSEP) were calculated for evaluation of 18 different calibration models. 50 different brands of EVOOs, which are also analyzed in terms of quality indexes, fatty acid composition, and squalene concentration (3.25-12.54 g/kg) were used for checking the predictive capacities of the calibration models. The best predictions were achieved using normal spectra in FL spectroscopy with the lowest RMSEC of 0.1065, RMSEV of 0.1310, and RMSEP of 0.1500 in the spectral region 250-730 nm. Thus, FL spectroscopy combined with PLS regression is proposed as a fast, accurate, and environmentally friendly approach that can be efficiently used in determining squalene in EVOOs.
Collapse
Affiliation(s)
- İsmail Tarhan
- Selçuk University, Faculty of Science, Department of Biochemistry, 42130, Selçuklu, Konya, Turkey.
| |
Collapse
|
25
|
Uncu O, Napiórkowska A, Szajna TK, Ozen B. Evaluation of three spectroscopic techniques in determination of adulteration of cold pressed pomegranate seed oils. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Tarhan İ, Bakır MR, Kalkan O, Kara H. Multivariate Modeling for Quantifying Adulteration of Sunflower Oil with Low Level of Safflower Oil Using ATR-FTIR, UV-Visible, and Fluorescence Spectroscopies: A Comparative Approach. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01891-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Han J, Sun R, Zeng X, Zhang J, Xing R, Sun C, Chen Y. Rapid Classification and Quantification of Camellia ( Camellia oleifera Abel.) Oil Blended with Rapeseed Oil Using FTIR-ATR Spectroscopy. Molecules 2020; 25:molecules25092036. [PMID: 32349404 PMCID: PMC7248856 DOI: 10.3390/molecules25092036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Currently, the authentication of camellia oil (CAO) has become very important due to the possible adulteration of CAO with cheaper vegetable oils such as rapeseed oil (RSO). Therefore, we report a Fourier transform infrared (FTIR) spectroscopic method for detecting the authenticity of CAO and quantifying the blended levels of RSO. In this study, two characteristic spectral bands (1119 cm-1 and 1096 cm-1) were selected and used for monitoring the purity of CAO. In combination with principal component analysis (PCA), linear discriminant analysis (LDA), and partial least squares regression (PLSR) analysis, qualitative and quantitative methods for the detection of camellia oil adulteration were proposed. The results showed that the calculated I1119/I1096 intensity ratio facilitated an initial check for pure CAO and six other edible oils. PCA was used on the optimized spectral region of 1800-650 cm-1. We observed the classification of CAO and RSO as well as discrimination of CAO with RSO adulterants. LDA was utilized to classify CAO from RSO. We could differentiate and classify RSO adulterants up to 1% v/v. In the quantitative PLSR models, the plots of actual values versus predicted values exhibited high linearity. Root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV) values of the PLSR models were 1.4518%-3.3164% v/v and 1.7196%-3.8136% v/v, respectively. This method was successfully applied in the classification and quantification of CAO adulteration with RSO.
Collapse
Affiliation(s)
- Jianxun Han
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.Z.); (R.X.)
| | - Ruixue Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xiuying Zeng
- Scientific Research Department, Ganzhou Quality Supervision and Inspection Institute, Ganzhou 341000, China;
| | - Jiukai Zhang
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.Z.); (R.X.)
| | - Ranran Xing
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.Z.); (R.X.)
| | - Chongde Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
- Correspondence: (C.S.); (Y.C.); Tel.: +86-010-5389-7910 (Y.C.)
| | - Ying Chen
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (J.Z.); (R.X.)
- Correspondence: (C.S.); (Y.C.); Tel.: +86-010-5389-7910 (Y.C.)
| |
Collapse
|
28
|
Collaborative Analysis on the Marked Ages of Rice Wines by Electronic Tongue and Nose based on Different Feature Data Sets. SENSORS 2020; 20:s20041065. [PMID: 32075334 PMCID: PMC7070273 DOI: 10.3390/s20041065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Aroma and taste are the most important attributes of alcoholic beverages. In the study, the self-developed electronic tongue (e-tongue) and electronic nose (e-nose) were used for evaluating the marked ages of rice wines. Six types of feature data sets (e-tongue data set, e-nose data set, direct-fusion data set, weighted-fusion data set, optimized direct-fusion data set, and optimized weighted-fusion data set) were used for identifying rice wines with different wine ages. Pearson coefficient analysis and variance inflation factor (VIF) analysis were used to optimize the fusion matrixes by removing the multicollinear information. Two types of discrimination methods (principal component analysis (PCA) and locality preserving projections (LPP)) were used for classifying rice wines, and LPP performed better than PCA in the discrimination work. The best result was obtained by LPP based on the weighted-fusion data set, and all the samples could be classified clearly in the LPP plot. Therefore, the weighted-fusion data were used as independent variables of partial least squares regression, extreme learning machine, and support vector machines (LIBSVM) for evaluating wine ages, respectively. All the methods performed well with good prediction results, and LIBSVM presented the best correlation coefficient (R2 ≥ 0.9998).
Collapse
|
29
|
Jamwal R, Amit, Kumari S, Balan B, Dhaulaniya AS, Kelly S, Cannavan A, Singh DK. Attenuated total Reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometrics for rapid detection of argemone oil adulteration in mustard oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Application of ATR-FTIR spectroscopy along with regression modelling for the detection of adulteration of virgin coconut oil with paraffin oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|