1
|
Liu H, Wang X, Tian H, Yuan Y, Wang J, Cheng Y, Sun L, Chen H, Song X. Visualized Nucleic Acid Hybridization Lateral Flow Strip Integrating with Microneedle for the Point-of-Care Authentication of Ophiocordyceps sinensis. Int J Mol Sci 2024; 25:13599. [PMID: 39769360 PMCID: PMC11677120 DOI: 10.3390/ijms252413599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Due to the price and demand of Ophiocordyceps sinensis having increased dramatically, adulteration with other fungi is a common problem. Thus, a reliable method of authentic O. sinensis identification is essential. In the present work, a rapid DNA extraction and double-tailed recombinase polymerase amplification (RPA) coupled with nucleic acid hybridization lateral flow strip (NAH-LFS) was developed to distinguish authentic O. sinensis ingredients from other fungi substitutes. In the presence of O. sinensis, the RPA amplicons with two ssDNA tails in the opposite ends, which could simultaneously bind with the SH-probes on gold nanoparticles (AuNPs) and capture the probe on the test line, formed visible red bands. RPA combined with NAH-LFS can efficiently detect O. sinensis DNA down to 1.4 ng/μL; meanwhile, the specificity test validated no cross reaction with common adulterants, including Cordyceps gunnii, Cordyceps cicadae, Cordyceps militaris, yungui Cordyceps, and Ophiocordyceps nutans. The whole RPA-NAH-LFS could be completed within 16 min. The RPA-NAH-LFS results in detecting 20 commercial O. sinensis samples are consistent with PCR-AGE and RT-PCR, confirming the feasibility of the RPA-NAH-LFS method. In conclusion, these results are expected to facilitate the application of RPA-NAH-LFS in the authentication detection of O. sinensis materials, providing a convenient and efficient method for O. sinensis quality control.
Collapse
Affiliation(s)
- Haibin Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Xinyue Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Hang Tian
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Yi Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Jing Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Yani Cheng
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Linyao Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| | - Hongshuo Chen
- College of Electrical Engineering, North China University of Science and Technology, Tangshan 063200, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063200, China; (H.L.); (X.W.); (H.T.); (Y.Y.); (J.W.); (Y.C.); (L.S.)
| |
Collapse
|
2
|
Zhang L, Zhang C, Li W, Li L, Zhang P, Zhu C, Ding Y, Sun H. Rapid Indentification of Auramine O Dyeing Adulteration in Dendrobium officinale, Saffron and Curcuma by SERS Raman Spectroscopy Combined with SSA-BP Neural Networks Model. Foods 2023; 12:4124. [PMID: 38002182 PMCID: PMC10670709 DOI: 10.3390/foods12224124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Rapid and accurate determination of the content of the chemical dye Auramine O(AO) in traditional Chinese medicines (TCMs) is critical for controlling the quality of TCMs. (2) Methods: Firstly, various models were developed to detect AO content in Dendrobium officinale (D. officinale). Then, the detection of AO content in Saffron and Curcuma using the D. officinale training set as a calibration model. Finally, Saffron and Curcuma samples were added to the training set of D. officinale to predict the AO content in Saffron and Curcuma using secondary wavelength screening. (3) Results: The results show that the sparrow search algorithm (SSA)-backpropagation (BP) neural network (SSA-BP) model can accurately predict AO content in D. officinale, with Rp2 = 0.962, and RMSEP = 0.080 mg/mL. Some Curcuma samples and Saffron samples were added to the training set and after the secondary feature wavelength screening: The Support Vector Machines (SVM) quantitative model predicted Rp2 fluctuated in the range of 0.780 ± 0.035 for the content of AO in Saffron when 579, 781, 1195, 1363, 1440, 1553 and 1657 cm-1 were selected as characteristic wavelengths; the Partial Least Squares Regression (PLSR) model predicted Rp2 fluctuated in the range of 0.500 ± 0.035 for the content of AO in Curcuma when 579, 811, 1195, 1353, 1440, 1553 and 1635 cm-1 were selected as the characteristic wavelengths. The robustness and generalization performance of the model were improved. (4) Conclusion: In this study, it has been discovered that the combination of surface-enhanced Raman spectroscopy (SERS) and machine learning algorithms can effectively and promptly detect the content of AO in various types of TCMs.
Collapse
Affiliation(s)
- Leilei Zhang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (L.Z.); (C.Z.); (W.L.); (C.Z.)
| | - Caihong Zhang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (L.Z.); (C.Z.); (W.L.); (C.Z.)
| | - Wenxuan Li
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (L.Z.); (C.Z.); (W.L.); (C.Z.)
| | - Liang Li
- Agricultural Technology and Soil Fertilizer General Station, Garze Tibetan Autonomous Prefecture, Kangding 626000, China; (L.L.); (P.Z.)
| | - Peng Zhang
- Agricultural Technology and Soil Fertilizer General Station, Garze Tibetan Autonomous Prefecture, Kangding 626000, China; (L.L.); (P.Z.)
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (L.Z.); (C.Z.); (W.L.); (C.Z.)
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (L.Z.); (C.Z.); (W.L.); (C.Z.)
| | - Hongwei Sun
- School of Automation, Hangzhou Dianzi University, Hangzhou 310083, China
| |
Collapse
|
3
|
Aissa R, Ibourki M, Ait Bouzid H, Bijla L, Oubannin S, Sakar EH, Jadouali S, Hermansyah A, Goh KW, Ming LC, Bouyahya A, Gharby S. Phytochemistry, quality control and medicinal uses of Saffron ( Crocus sativus L.): an updated review. J Med Life 2023; 16:822-836. [PMID: 37675158 PMCID: PMC10478662 DOI: 10.25122/jml-2022-0353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 09/08/2023] Open
Abstract
Saffron, botanically known as Crocus sativus L., is renowned as the world's most expensive spice and has been utilized in various fields since ancient times. Extensive scientific research has been conducted on Crocus sativus (C. sativus), focusing on its phytochemical composition, diverse applications, and biological activities. C. sativus phytochemicals consist mainly of three compounds, namely crocin, picrocrocin, and safranal, which are responsible for most of its properties. Saffron is rich in bioactive compounds, more than 150 of which have been isolated. Owing to its unique composition and properties, saffron is used in various fields, such as the food industry, perfumery, cosmetics, pharmaceutics, and medicine. However, the high economic value of saffron makes it susceptible to adulteration and various fraudulent practices. To deal with this issue, a number of methods and techniques have been developed to authenticate and determine adulterants in saffron. This paper presents a bibliometric study of saffron based on the Web of Science database, analyzing 3,735 studies published between 2000 and 2021. The study also examined author participation and collaboration networks among countries. Production, transformation, chemical composition, methods of adulteration detection, uses, and health properties of saffron are also discussed.
Collapse
Affiliation(s)
- Rabha Aissa
- Department of Bio-Industrial Engineering & Environment, Bioprocesses and Environment Team, Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ibourki
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Hasna Ait Bouzid
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Laila Bijla
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology, and Health, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Simohamed Jadouali
- Laboratory of Biotechnology, Bioanalysis and Bioinformatics, Superior School of Technology, Sultan Moulay Slimane University, Khenifra, Morocco
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Abdelhakim Bouyahya
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| |
Collapse
|
4
|
Chen S, Yin X, Han J, Sun W, Yao H, Song J, Li X. DNA barcoding in herbal medicine: Retrospective and prospective. J Pharm Anal 2023; 13:431-441. [PMID: 37305789 PMCID: PMC10257146 DOI: 10.1016/j.jpha.2023.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
DNA barcoding has been widely used for herb identification in recent decades, enabling safety and innovation in the field of herbal medicine. In this article, we summarize recent progress in DNA barcoding for herbal medicine to provide ideas for the further development and application of this technology. Most importantly, the standard DNA barcode has been extended in two ways. First, while conventional DNA barcodes have been widely promoted for their versatility in the identification of fresh or well-preserved samples, super-barcodes based on plastid genomes have rapidly developed and have shown advantages in species identification at low taxonomic levels. Second, mini-barcodes are attractive because they perform better in cases of degraded DNA from herbal materials. In addition, some molecular techniques, such as high-throughput sequencing and isothermal amplification, are combined with DNA barcodes for species identification, which has expanded the applications of herb identification based on DNA barcoding and brought about the post-DNA-barcoding era. Furthermore, standard and high-species coverage DNA barcode reference libraries have been constructed to provide reference sequences for species identification, which increases the accuracy and credibility of species discrimination based on DNA barcodes. In summary, DNA barcoding should play a key role in the quality control of traditional herbal medicine and in the international herb trade.
Collapse
Affiliation(s)
- Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianmei Yin
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiwen Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
5
|
Point-of-care suitable identification of the adulterants Carthamus tinctorius and Curcuma longa in Crocus sativus based on loop-mediated isothermal amplification (LAMP) and lateral-flow-assay (LFA). Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
7
|
An overview on different detection methods of saffron (Crocus sativus L.) adulterants. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Abstract
INTRODUCTION Recombinase polymerase amplification (RPA) is a promising and emerging technology for rapidly amplifying target nucleic acid from minimally processed samples and through small portable instruments. RPA is suitable for point-of-care testing (POCT) and on-site field testing, and it is compatible with microfluidic devices. Several detection assays have been developed, but limited research has dug deeper into the chemistry of RPA to understand its kinetics and fix its shortcomings. AREAS COVERED This review provides a detailed introduction of RPA molecular mechanism, kits formats, optimization, application, pros, and cons. Moreover, this critical review discusses the nonspecificity issue of RPA, highlights its consequences, and emphasizes the need for more research to resolve it. This review discusses the reaction kinetics of RPA in relation to target length, product quantity, and sensitivity. This critical review also questions the novelty of recombinase-aided amplification (RAA). In short, this review discusses many aspects of RPA technology that have not been discussed previously and provides a deeper insight and new perspectives of the technology. EXPERT OPINION RPA is an excellent choice for pathogen detection, especially in low-resource settings. It has a potential to replace PCR for all purposes, provided its shortcomings are fixed and its reagent accessibility is improved.
Collapse
Affiliation(s)
- Mustafa Ahmad Munawar
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
The Relation between Drying Conditions and the Development of Volatile Compounds in Saffron ( Crocus sativus). Molecules 2021; 26:molecules26226954. [PMID: 34834046 PMCID: PMC8621395 DOI: 10.3390/molecules26226954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Saffron is derived from the stigmas of the flower Crocus sativus L. The drying process is the most important post-harvest step for converting C. sativus stigmas into saffron. The aim of this review is to evaluate saffron's post-harvest conditions in the development of volatile compounds and its aroma descriptors. It describes saffron's compound generation by enzymatic pathways and degradation reactions. Saffron quality is described by their metabolite's solubility and the determination of picrocrocin, crocins, and safranal. The drying process induce various modifications in terms of color, flavor and aroma, which take place in the spice. It affects the aromatic species chemical profile. In the food industry, saffron is employed for its sensory attributes, such as coloring, related mainly to crocins (mono-glycosyl esters or di-glycosyl polyene).
Collapse
|
10
|
Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:5185. [PMID: 34372422 PMCID: PMC8348896 DOI: 10.3390/s21155185] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Fabio Di Nardo
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (M.C.); (S.C.); (C.B.); (L.A.)
| | | | | | | | | |
Collapse
|
11
|
Fanelli V, Mascio I, Miazzi MM, Savoia MA, De Giovanni C, Montemurro C. Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods 2021; 10:1644. [PMID: 34359514 PMCID: PMC8306823 DOI: 10.3390/foods10071644] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplification-based methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agri-food traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
12
|
Kumari L, Jaiswal P, Tripathy SS. Various techniques useful for determination of adulterants in valuable saffron: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Magotra S, Bhagat N, Ambardar S, Ali T, Hurek BR, Hurek T, Verma PK, Vakhlu J. Field evaluation of PGP Bacillus sp. strain D5 native to Crocus sativus, in traditional and non traditional areas, and mining of PGP genes from its genome. Sci Rep 2021; 11:5454. [PMID: 33750799 PMCID: PMC7943801 DOI: 10.1038/s41598-021-84585-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Native Bacillus sp. strain D5 coded as (Bar D5) has been isolated from the saffron corm that showed plant growth promotion (PGP) properties and also inhibits the growth of corm rot causing Fusarium oxysporum R1 (Fox R1) in-vitro. Bar D5 was more efficient PGP bacterium in comparison to earlier reported native bio-formulations by our group. Pot assays and field evaluation of Bar D5 confirmed its in-vivo efficacy for PGP traits and biocontrol activity as well. Pot trials were followed by field trials at traditional (Kishtwar) and non-traditional (R.S Pura) saffron cultivation areas in Jammu and Kashmir. At both places, Bar D5 bio-formulation treatment led to the increase in root number & length, shoot number & length, flower number and number & weight of daughter corms. Additionally, it also decreased the corm rot disease incidence significantly. Priming of corms with bio-formulation resulted in the reduction of pathogenic fungal load by three fold at the depth of corm sowing from ground level. The shelf life/viability of Bar D5 based bio-formulation was found to be 52% (viable spores) for one year at room temperature. Draft genome sequence of Bar D5 revealed the presence of genes necessary for PGP and biocontrol activity. Further, confirmation of gene sequences and annotation was done by amplification, re-sequencing and mapping of PGP and biocontrol genes on draft genome. Bar D5 based bio-formulation can be provided to companies/researchers interested in saffron cultivation or bio-formulation production for commercial exploitation, since saffron is grown as revenue crop across continents. The present study bridges the gap between genomics and its field application.
Collapse
Affiliation(s)
- Shanu Magotra
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India ,grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Punjab, 140413 India
| | - Nancy Bhagat
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Sheetal Ambardar
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Bellary Road, Bangalore, 560065 India
| | - Tahir Ali
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India
| | - Barbara Reinhold Hurek
- grid.7704.40000 0001 2297 4381Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, P.O. Box 33 04 40, Bremen, Germany
| | - Thomas Hurek
- grid.7704.40000 0001 2297 4381Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, P.O. Box 33 04 40, Bremen, Germany
| | - Praveen Kumar Verma
- grid.419632.b0000 0001 2217 5846Plant Immunity Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
| | - Jyoti Vakhlu
- grid.412986.00000 0001 0705 4560Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006 India
| |
Collapse
|
14
|
Liu H, Wang J, Li P, Bai L, Jia J, Pan A, Long X, Cui W, Tang X. Rapid detection of P–35S and T-nos in genetically modified organisms by recombinase polymerase amplification combined with a lateral flow strip. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron 2019; 136:60-75. [DOI: 10.1016/j.bios.2019.04.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
|