1
|
Ghidotti M, Papoci S, Respaldiza A, Emteborg H, Ulberth F, de la Calle Guntiñas MB. Use of energy dispersive X-ray fluorescence to authenticate European wines with protected designation of origin. Challenges of a successful control system based on modelling. Food Chem 2025; 465:141989. [PMID: 39550975 PMCID: PMC11649527 DOI: 10.1016/j.foodchem.2024.141989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Consumers are willing to pay a higher price for food with geographical origin labels such as Protected Designation of Origin and Protected Geographical Indication. In this work, the elemental profile of wine obtained by XRF, combined with multivariate analyses, is used to authenticate 111 Croatian, Italian and Spanish red and white wines, 102 of them from 20 Protected Designations of Origin, reproducing the circumstances faced by control laboratories, using commercially available wines without traceability records. Wines that shared origin clustered together and separated from those of other regions following multivariate statistical tests. Classifications made using Soft Independent Modelling by Class Analogy were characterised by poor sensitivity and specificity. An alternative approach based on successive Partial Least Square Discriminant Analyses with consecutive classifications at country, region and finally, Protected Designation of Origin level, was developed and implemented with good accuracy results. In total, 88 % of the samples were correctly classified.
Collapse
Affiliation(s)
| | - Sergej Papoci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Håkan Emteborg
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Franz Ulberth
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | |
Collapse
|
2
|
Charnock HM, Pickering GJ, Kemp BS. Effect of Amino Acid, Sugar, Ca 2+, and Mg 2+ on Maillard Reaction-Associated Products in Modified Sparkling Base Wines During Accelerated Aging. Molecules 2025; 30:535. [PMID: 39942642 PMCID: PMC11821130 DOI: 10.3390/molecules30030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The Maillard reaction (MR) between sugars and amino acids, peptides, or proteins is understood to occur gradually during the production and aging of sparkling wines, where it contributes to caramel, roasted, and toasted aromas. Divalent metal ions can accelerate the MR, although this has not been previously reported in wine or wine-like conditions. In this work, the effect of calcium (Ca) and magnesium (Mg) ions on the concentration of 10 Maillard reaction-associated products (MRPs) was measured in modified sparkling base wine during accelerated aging at 50 °C for four weeks. Chardonnay base wine was modified by the addition of fructose (0.02 M) and a single amino acid (lysine, glycine, cysteine; 0.01 M) in combination with Ca2+ or Mg2+ at zero, low (10 mg/L), or high (50 mg/L) dose levels. MRPs were quantified by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS), sugar concentration was measured by enzymatic assay, and amino acids and free metal ions were monitored by capillary electrophoresis. Fructose levels did not substantially decrease during aging despite increases in all MRPs, suggesting that trace sugars or α-dicarbonyl species present in the wine matrix likely play a greater role in MRP formation than fructose. Aging duration and amino acid content had a greater effect than metal addition on the composition of the MRPs. Treatments containing cysteine and 50 mg/L Ca2+ had elevated concentrations of benzaldehyde and furfural ethyl ether following 4 weeks of accelerated aging. This work identified key MRPs that increase during base wine accelerated aging and informs future research on the relationship between wine composition and aging markers.
Collapse
Affiliation(s)
- Hannah M. Charnock
- Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (H.M.C.); (G.J.P.)
| | - Gary J. Pickering
- Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (H.M.C.); (G.J.P.)
- Cool Climate Oenology & Viticulture Institute, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Gulbali Institute, Charles Sturt University, McKeown Drive, Wagga Wagga, NSW 2678, Australia
| | - Belinda S. Kemp
- Niab—National Institute of Agricultural Botany, New Rd, East Malling, Kent ME19 6BJ, UK
| |
Collapse
|
3
|
Su Y, Zhang J, Wang L, Jin G, Zhang A. Signature of Sr isotope ratios and the contents of elements as a tool to distinguish wine regions in China. Food Chem 2024; 446:138812. [PMID: 38408400 DOI: 10.1016/j.foodchem.2024.138812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
This study investigated 120 Chinese wines from seven regions and had two objectives: to clarify the Sr isotope ratios and elemental characteristics of each region and to develop a strategy to distinguish the geographic origin of wine without authentic samples to predict its origin. The analyzed 87Sr/86Sr values ranged from 0.708256 to 0.715148, which correlated with the geological characteristics of the regions where they were grown. The Hexi Corridor exhibited the highest ratios of Sr isotopes, while Xinjiang had the lowest. The 87Sr/86Sr values were applied to establish a prediction map which was evaluated through cross-validation. The prediction error was found to be less than 0.00074. The Sr isotope ratio could remain stable for an extended period in a specific location. This map shows the feasibility of identifying wine origin and could be applied to other food products. Adding Sr isotope ratios could improve the accuracy in tracing wine origin.
Collapse
Affiliation(s)
- Yingyue Su
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, PR China; Northwest A&F University, Yangling 712100, PR China; Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, PR China
| | - Jiancai Zhang
- Hebei Normal University of Science and Technology, Qinhuangdao 066004, PR China
| | - Lishan Wang
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, PR China
| | - Gang Jin
- Ningxia University, Yinchuan 750021, PR China.
| | - Ang Zhang
- Technology Center of Qinhuangdao Customs, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Wine Quality & Safety Testing, Qinhuangdao 066004, PR China.
| |
Collapse
|
4
|
Suchecki Barnet L, Harumi Yamashita G, Anzanello MJ, Pozebon D. Determination of the most informative chemical elements for discrimination of rice samples according to the producing region. Food Chem 2023; 402:134208. [DOI: 10.1016/j.foodchem.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
5
|
Charnock HM, Pickering GJ, Kemp BS. The Maillard reaction in traditional method sparkling wine. Front Microbiol 2022; 13:979866. [PMID: 36090075 PMCID: PMC9459140 DOI: 10.3389/fmicb.2022.979866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The Maillard reaction between sugars and amino acids, peptides, or proteins generates a myriad of aroma compounds through complex and multi-step reaction pathways. While the Maillard has been primarily studied in the context of thermally processed foods, Maillard-associated products including thiazoles, furans, and pyrazines have been identified in aged sparkling wines, with associated bready, roasted, and caramel aromas. Sparkling wines produced in the bottle-fermented traditional method (Méthode Champenoise) have been the primary focus of studies related to Maillard-associated compounds in sparkling wine, and these wines undergo two sequential fermentations, with the second taking place in the final wine bottle. Due to the low temperature (15 ± 3°C) and low pH (pH 3-4) conditions during production and aging, we conclude that Maillard interactions may not proceed past intermediate stages. Physicochemical factors that affect the Maillard reaction are considered in the context of sparkling wine, particularly related to pH-dependent reaction pathways and existing literature pertaining to low temperature and/or low pH Maillard activity. A focus on the origins and composition of precursor species (amino acids and sugars) in sparkling wines is presented, as well as the potential role of metal ions in accelerating the Maillard reaction. Understanding the contributions of individual physicochemical factors to the Maillard reaction in sparkling wine enables a clearer understanding of reaction pathways and sensory outcomes. Advancements in analytical techniques for monitoring the Maillard reaction are also described, and important areas of future research on this topic are identified.
Collapse
Affiliation(s)
- Hannah M. Charnock
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
| | - Gary J. Pickering
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
- Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON, Canada
- National Wine and Grape Industry Center, Charles Sturt University, Wagga Wagga, NSW, Australia
- Sustainability Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Belinda S. Kemp
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
- Cool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON, Canada
| |
Collapse
|
6
|
Analysis and improvements on feature selection methods based on artificial neural network weights. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Characterization of Musts, Wines, and Sparkling Wines Based on Their Elemental Composition Determined by ICP-OES and ICP-MS. BEVERAGES 2022. [DOI: 10.3390/beverages8010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Samples from the different processing stages in the elaboration of sparkling wine (cava)—including must, base wine, and sparkling wine—of Pinot Noir and Xarel·lo grape varieties from different vineyard qualities (A, B, C, D) have been analyzed by inductively coupled plasma (ICP) techniques to determine their elemental composition. The resulting data has been used to characterize these products according to oenological features and product qualities. For this purpose, box plot diagrams, bar charts, and principal components analysis (PCA) have been used. The study of the behavior of each given species has pointed out the relevance of some elements as markers or descriptors of winemaking processes. Among others, Cu and K are abundant in musts and their concentrations progressively decrease through the cava production process. S levels suddenly increase at the base wine step (and further decay) due to the addition of sulfites as preserving agents. Finally, concentrations of Na, Ca, Fe, and Mg increase from the first fermentation due to the addition of clarifying agents such as bentonite. PCA has been applied to try to extract solid and global conclusions on trends and chemical markers within the groups of samples more easily and efficiently than more conventional approaches.
Collapse
|
8
|
Su Y, Zhao Y, Cui K, Wang F, Zhang J, Zhang A. Wine characterisation according to geographical origin using analysis of mineral elements and rainfall correlation of oxygen isotope values. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yingyue Su
- Technology Centre of Qinhuangdao Customs Qinhuangdao Hebei 066000 China
- Key Laboratory of Wine Quality & Safety Testing of Hebei Provence Qinhuangdao Hebei 066000 China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro‐Products Key Laboratory of Agro‐product Quality and Safety Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Kexu Cui
- Shangri‐La Wine Co., Ltd Diqing Prefecture Yunnan Province 674402 China
| | - Fei Wang
- Technology Centre of Qinhuangdao Customs Qinhuangdao Hebei 066000 China
- Key Laboratory of Wine Quality & Safety Testing of Hebei Provence Qinhuangdao Hebei 066000 China
| | - Jinjie Zhang
- Technology Centre of Qinhuangdao Customs Qinhuangdao Hebei 066000 China
- Key Laboratory of Wine Quality & Safety Testing of Hebei Provence Qinhuangdao Hebei 066000 China
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs Qinhuangdao Hebei 066000 China
- Key Laboratory of Wine Quality & Safety Testing of Hebei Provence Qinhuangdao Hebei 066000 China
| |
Collapse
|
9
|
Griboff J, Horacek M, Wunderlin DA, Monferrán MV. Differentiation Between Argentine and Austrian Red and White Wines Based on Isotopic and Multi-Elemental Composition. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.657412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this work, the characterization of white and red wines from Austria and Argentina was carried out based on the isotopic and multi-elemental profile data. They were determined using vanguard techniques such as isotope ratio mass spectrometry and inductively coupled plasma mass spectrometry. In particular, Al, As, B, Ca, Co, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Sr, V, Zn, δ18O, and δ13C were determined. The results show that the samples of wines from Argentina generally present higher concentrations of the elements analyzed compared to Austrian wines. δ18O values from wine water were characteristic of each country, while δ13C values from ethanol did not present any geographical distinction. Linear discriminant analysis using isotopes and elements allowed us to classify 100% of the wines according to the origin and additionally, 98.4% when separately investigating red and white wines. The elements Sr, Li, V, Pb, B, Mn, Co, Rb, As, Na, Mg, Zn, and δ18O were identified as sensitive indicators capable of differentiate wines according to their production origin. Furthermore, Sr, Li, Na, δ13C, δ18O, Ca, B, Fe, Mn, V, Mg, Co, and Zn contributed to the differentiation of wines according to origin and color. To our knowledge, it is the first work that involves the measurement of a wide range of elements and stable isotopes in white and red wines in Argentina, as well as in Austria. This research highlights the power of the application of stable isotopes and multi-element data in multivariate statistical analysis, in order to obtain an accurate differentiation of wines origin.
Collapse
|
10
|
Discrimination of sparkling wines samples according to the country of origin by ICP-OES coupled with multivariate analysis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
da Costa NL, Ximenez JPB, Rodrigues JL, Barbosa F, Barbosa R. Characterization of Cabernet Sauvignon wines from California: determination of origin based on ICP-MS analysis and machine learning techniques. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03480-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|