1
|
Armah AA, Ofori KF, Sutherland K, Otchere E, Lewis WA, Long W. Antimicrobial Effectiveness of Clove Oil in Decontamination of Ready-to-Eat Spinach ( Spinacia oleracea L.). Foods 2025; 14:249. [PMID: 39856915 PMCID: PMC11765317 DOI: 10.3390/foods14020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Due to an increased demand for natural food additives, clove oil was assessed as a natural alternative to chemical disinfectants in produce washing. This study assessed the antimicrobial activity of 5 and 10% (v/v) clove oil-amended wash liquid (CO) using a zone of inhibition (ZIB) test and determined the time required to completely inactivate pathogenic bacteria using bacterial death curve analysis. A washing experiment was used to evaluate CO's ability to inhibit bacterial growth on inoculated RTE spinach and in the wash water. The findings showed that Shigella flexneri, Salmonella Typhimurium, and Salmonella enterica recovery were completely inhibited within 5 min. Escherichia coli and Staphylococcus aureus recovery were completely inhibited at 10 and 30 min, respectively. The ZIB test showed that 5% CO had the highest inhibitory effect on both Salmonella strains and E. coli with approximately 10 mm ZIB diameter. Additionally, 5% CO completely inactivated all bacterial strains on spinach samples and in the wash water except for S. aureus. A total of 80 mg/L peracetic acid (PAA) resulted in >2log CFU/mL recovery on experimental washed samples. These findings suggest that 5% CO was highly effective in inhibiting microbial growth on RTE spinach, potentially contributing to sustainable food safety and shelf-life extension strategies.
Collapse
Affiliation(s)
- Abigail A. Armah
- College of Agriculture, Science and Technology, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA; (K.F.O.); (K.S.); (E.O.); (W.A.L.)
| | | | | | | | | | - Wilbert Long
- College of Agriculture, Science and Technology, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA; (K.F.O.); (K.S.); (E.O.); (W.A.L.)
| |
Collapse
|
2
|
Tagrida M, Palamae S, Saetang J, Ma L, Hong H, Benjakul S. Comparative Study of Quercetin and Hyperoside: Antimicrobial Potential towards Food Spoilage Bacteria, Mode of Action and Molecular Docking. Foods 2023; 12:4051. [PMID: 38002109 PMCID: PMC10670185 DOI: 10.3390/foods12224051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The antibacterial activities of quercetin and hyperoside were evaluated towards two major spoilage bacteria in fish, Pseudomonas aeruginosa (PA) and Shewanella putrefaciens (SP). Hyperoside showed a lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) towards both spoilage bacteria, PA and SP, than quercetin. Cell membrane morphology was affected when treated with hyperoside and quercetin. The release of content from the treated cells occurred, as ascertained by the release of potassium and magnesium ions and the increase in conductivity of the culture media. The morphology of cells was significantly changed, in which shrinkage and pores were obtained, when observed using SEM. Both compounds negatively affected the motility, both swimming and swarming, and the formation of extracellular polymeric substance (EPS), thus confirming antibiofilm activities. Agarose gel analysis revealed that both compounds could bind to or degrade the genomic DNA of both bacteria, thereby causing bacterial death. Molecular docking indicated that the compounds interacted with the minor groove of the DNA, favoring the adenine-thymine-rich regions. Thus, both quercetin and hyperoside could serve as potential antimicrobial agents to retard the spoilage of fish or perishable products.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Feng Y, Yang T, Zhang Y, Zhang A, Gai L, Niu D. Potential applications of pulsed electric field in the fermented wine industry. Front Nutr 2022; 9:1048632. [PMID: 36407532 PMCID: PMC9668251 DOI: 10.3389/fnut.2022.1048632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
Fermented wine refers to alcoholic beverages with complex flavor substances directly produced by raw materials (fruit or rice) through microbial fermentation (yeast and bacteria). Its production steps usually include saccharification, fermentation, filtration, sterilization, aging, etc., which is a complicated and time-consuming process. Pulsed electric field (PEF) is a promising non-thermal food processing technology. Researchers have made tremendous progress in the potential application of PEF in the fermented wine industry over the past few years. The objective of this paper is to systematically review the achievements of PEF technology applied to the winemaking and aging process of fermented wine. Research on the application of PEF in fermented wine suggests that PEF treatment has the following advantages: (1) shortening the maceration time of brewing materials; (2) promoting the extraction of main functional components; (3) enhancing the color of fermented wine; (4) inactivating spoilage microorganisms; and (5) accelerating the formation of aroma substances. These are mainly related to PEF-induced electroporation of biomembranes, changes in molecular structure and the occurrence of chemical reactions. In addition, the key points of PEF treatments for fermented wine are discussed and some negative impacts and research directions are proposed.
Collapse
Affiliation(s)
- Yuanxin Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yongniu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ailin Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lili Gai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China,*Correspondence: Debao Niu,
| |
Collapse
|
4
|
Su R, Bai X, Liu X, Song L, Liu X, Zhan X, Guo D, Wang Y, Chang Y, Shi C. Antibacterial Mechanism of Eugenol Against Shigella sonnei and Its Antibacterial Application in Lettuce Juice. Foodborne Pathog Dis 2022; 19:779-786. [PMID: 36367551 DOI: 10.1089/fpd.2022.0046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shigella sonnei is a species of Shigella, and the infection rate of S. sonnei is increasing year by year. Eugenol is an active ingredient in clove essential oil and is a generally recognized as safe (GRAS)-certified food ingredient. The mechanism of inhibition of S. sonnei by eugenol has been investigated in this study. The minimum inhibitory concentration of eugenol against both S. sonnei ATCC 25931 and S. sonnei CMCC 51592 was 0.5 mg/mL and minimum bactericidal concentration (MBC) for both strains was 0.8 mg/mL. The inhibition effect of eugenol against S. sonnei was due to increased levels of reactive oxygen species in cells, changed cell membrane permeability, and induced cell membrane dysfunction, for instance, cell membrane hyperpolarization and intracellular ATP concentration drops. The results of confocal laser scanning microscope and field emission scanning electron microscopy showed that eugenol leads to decreased cell membrane integrity, resulting in changed cell morphology. Moreover, eugenol inactivated S. sonnei in Luria-Bertani (LB) broth and lettuce juice. These results indicated that eugenol could inactivate S. sonnei and has the potential to control S. sonnei in the food industry.
Collapse
Affiliation(s)
- Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Balasubramanian B, Shah T, Allen J, Rankin K, Xue J, Luo Y, Mancini R, Upadhyay A. Eugenol nanoemulsion inactivates Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7 on cantaloupes without affecting rind color. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.984391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7 are the major foodborne pathogens that have been implicated in outbreaks related to consumption of contaminated cantaloupes. Current chlorine-based decontamination strategies are not completely effective for inactivating the aforementioned pathogens on cantaloupes, especially in the presence of organic matter. This study investigated the efficacy of eugenol nanoemulsion (EGNE) wash treatments in inactivating L. monocytogenes, Salmonella spp., and E. coli O157:H7 on the surface of cantaloupes. In addition, the efficacy of EGNE in inhibiting the growth of the three pathogens on cantaloupes during refrigerated and room temperature storage of 5 days was investigated. Moreover, the effect of EGNE wash treatment on cantaloupe color was assessed using a Miniscan® XE Plus. The EGNE was prepared with either Tween 80 (TW) or a combination of Gum arabic and Lecithin (GA) as emulsifiers. The cantaloupe rind was washed with EGNE (0.3, 0.6, and 1.25%), in presence or absence of 5% organic load, for 1, 5, or 10 min at 25°C. Enumeration of surviving pathogens on cantaloupe was performed by serial dilution and plating on Oxford, XLD or SMA agar followed by incubation at 37°C for 24–48 h. EGNE-GA and EGNE-TW wash significantly reduced all three pathogens by at least 3.5 log CFU/cm2 as early as 5 min after treatment. EGNE-GA at 1.25% inactivated L. monocytogenes, E. coli O157:H7 and S. Enteritidis on cantaloupes to below the detectable limit within 5 and 10 min of treatment, respectively (~4 log CFU/cm2, P < 0.05). EGNE treatments significantly reduced the survival of L. monocytogenes, S. Enteritidis, and E. coli O157:H7 on cantaloupe by at least 6 log CFU/cm2 at day 5 of storage at 25 and 4°C (P < 0.05). Presence of organic matter did not modulate the antimicrobial efficacy of nanoemulsion treatments (P > 0.05). EGNE treatments did not affect the rind color of cantaloupes (P > 0.05). In conclusion, eugenol nanoemulsions could potentially be used as a natural sanitizer to inactivate foodborne pathogens on cantaloupes. Further investigations in an industry setting are warranted.
Collapse
|
6
|
Bai X, Li X, Liu X, Xing Z, Su R, Wang Y, Xia X, Shi C. Antibacterial Effect of Eugenol on Shigella flexneri and Its Mechanism. Foods 2022; 11:foods11172565. [PMID: 36076751 PMCID: PMC9455010 DOI: 10.3390/foods11172565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Shigella flexneri (Sh. flexneri), which can be found in food and the environment, is a widespread food-borne pathogen that causes human diarrhea termed “shigellosis”. In this study, eugenol, a natural active substance, was investigated for its antibacterial activity against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of eugenol against Sh. flexneri ATCC 12022 was 0.5 and 0.8 mg/mL. The growth curves and inhibitory effect in LB broth, PBS, vegetable juice, and minced pork showed that eugenol had a good activity against Sh. flexneri. Research findings indicated the superoxide dismutase activity of Sh. flexneri was inhibited after eugenol treatment, resulting in concentrations of intracellular reactive oxygen species and an increase in malondialdehyde. The flow cytometry analysis and field emission scanning electron microscopy results revealed obvious damage to cell membrane integrity and changes in the morphology of Sh. flexneri. In addition, the intracellular ATP concentration leaked from 0.5 μM to below 0.05 μM and the membrane potential showed a concentration-dependent depolarization after eugenol treatment. In summary, eugenol exerted strong antibacterial activity and has the potential to control Sh. flexneri in the food industry.
Collapse
Affiliation(s)
- Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xue Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zeyu Xing
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
7
|
In Vitro Antibacterial Mechanism of High-Voltage Electrostatic Field against Acinetobacter johnsonii. Foods 2022; 11:foods11070955. [PMID: 35407042 PMCID: PMC8997369 DOI: 10.3390/foods11070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the antibacterial properties and mechanisms of a high-voltage static electric field (HVEF) in Acinetobacter johnsonii, which were assessed from the perspective of biochemical properties and stress-related genes. The time/voltage-kill assays and growth curves showed that an HVEF decreased the number of bacteria and OD600 values. In addition, HVEF treatment caused the leakage of cell contents (nucleic acids and proteins), increased the electrical conductivity and amounts of reactive oxygen substances (ROS) (16.88 fold), and decreased the activity of Na+ K+-ATPase in A. johnsonii. Moreover, the changes in the expression levels of genes involved in oxidative stress and DNA damage in the treated A. johnsonii cells suggested that HVEF treatment could induce oxidative stress and DNA sub-damage. This study will provide useful information for the development and application of an HVEF in food safety.
Collapse
|
8
|
Souza VVMA, Almeida JM, Barbosa LN, Silva NCC. Citral, carvacrol, eugenol and thymol: antimicrobial activity and its application in food. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2032422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Antibacterial effect of phenyllactic acid against Vibrio parahaemolyticus and its application on raw salmon fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Zhang X, Zhou D, Cao Y, Zhang Y, Xiao X, Liu F, Yu Y. Synergistic inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by gallic acid and thymol and its potential application on fresh-cut tomatoes. Food Microbiol 2021; 102:103925. [PMID: 34809951 DOI: 10.1016/j.fm.2021.103925] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Antibacterial activity against Escherichia coli O157:H7 and Staphylococcus aureus of five typical plant-derived compounds [gallic acid (G.A), citral (Cit), thymol (Thy), salicylic acid (S.A), lauric acid (L.A)] were investigated by determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI). The results showed that only a combination of Thy and G.A (TGA), with a concentration of 0.1 and 1.25 mg/mL, respectively, had a synergistic effect (FICI = 0.5) on both E. coli O157:H7 and S. aureus. The amount of Thy and G.A in mixture were four-fold lower than the MICs of the individuals shown to cause the equivalent antimicrobial activity in trypticase soy broth (TSB). The microbial reduction obtained in TSB with addition of TGA were significantly higher (P < 0.05) than the reduction shown for the broth supplemented with the separated phenolics. TGA caused the changes of morphology and membrane integrity of bacteria. Additionally, the application of TGA on fresh-cut tomatoes are investigated. Fresh-cut tomatoes inoculated with E. coli O157:H7and S. aureus were washed for 2min, 5min, 10min at 4 °C, 25 °C, 40 °C in 0.3% NaOCl, or water containing TGA at various concentrations. Overall, the reduction of TGA achieved against S. aureus is higher than E. coli O157:H7. Same concentrations of combined antimicrobials at a temperature of 40 °C further increased the degree of microbial inactivation, with an additional 0.89-1.51 log CFU/g reduction compared to that at 25 °C. Moreover, 1/2MICThy+1/2MICG.A at 25 °C for 10min or 40 °C for 5min were generally acceptable with sensorial scores higher than 7. Our results showed that TGA could work synergistically on the inactivation of the tested bacteria and may be used as an alternative disinfectant of fresh produce.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, No.336 Liuting Street, Haishu District, Ningbo City, Zhejiang province, 315012, China
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Yan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China.
| | - Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, China.
| |
Collapse
|
11
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
12
|
Li X, Li J, Wang R, Rahaman A, Zeng XA, Brennan CS. Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Ahmad A, Elisha IL, van Vuuren S, Viljoen A. Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. PHYTOCHEMISTRY 2021; 190:112864. [PMID: 34311279 DOI: 10.1016/j.phytochem.2021.112864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Historically, essential oils and their lead molecules have been extensively recognised for their anti-infective properties. In this context, certain volatile phenolics (VPs) have emerged as important antimicrobial compounds with excellent inhibitory activity against pathogenic bacteria and fungi, which further extends to drug-resistant and biofilm-forming micro-organisms. In this review, we aim to collate and discuss a number of published papers on the anti-infective activities of naturally occurring VPs with special emphasis on eugenol, isoeugenol, thymol and carvacrol, using Scopus Web of Science and PubMed databases. The biosynthesis and extraction of these VPs are discussed, while particular attention is given to their broad-spectrum antimicrobial activity and the mechanisms of action. We highlight combinational studies of the VPs with other phytocompounds and with commercially available drugs, which may be a promising and a rewarding future approach to combat antimicrobial resistance. These VPs alone, or concomitantly with other compounds or drugs, have the potential to be incorporated into different formulations for biomedical applications. An in-depth assessment of 2310 articles retrieved from the Scopus database spanning a 35-year period indicated 23.1% increase in global publication growth in VPs anti-infective research, with authors from Italy, Portugal and Austria dominating the research landscape. The dominant areas of investigations are identified as antimicrobial activity, antibacterial mechanism of action, antifungal mechanism of action, extraction methods and phytochemistry, use in the food industry, and for oral and dental anti-infective activity. Specific research areas, which require future attention include; antituberculosis research, nanoparticle formulation of antimicrobial active VP molecules, preclinical and clinical trials. The antimicrobial testing of isoeugenol was found to be the least studied of the VPs and this requires further attention.
Collapse
Affiliation(s)
- Aijaz Ahmad
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa.
| | - Ishaku Leo Elisha
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; Drug Development Section, Biochemistry Division, National Veterinary Research Institute, P.M.B. 01 Vom, Plateau State, Nigeria.
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
14
|
Niu D, Ren EF, Li J, Zeng XA, Li SL. Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang R, Li J, Niu DB, Xu FY, Zeng XA. Protective effect of baicalein on DNA oxidative damage and its binding mechanism with DNA: An in vitro and molecular docking study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119605. [PMID: 33667888 DOI: 10.1016/j.saa.2021.119605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
In this work, the protective effect of baicalein on DNA oxidative damage and its possible protection mechanisms were investigated. 2-thiobarbituric acid (TBA) colorimetry and agarose gel electrophoresis study found that baicalein protected the deoxyribose residue and double-stranded backbone of DNA from the damage of hydroxyl radicals. Antioxidant analysis results showed that baicalein has excellent radicals scavenging effects and Fe2+ chelating ability, which might be the mechanism of baicalein protecting DNA. DNA binding studies indicated that baicalein bound to the minor groove of DNA with moderate binding affinity (K = (7.35 ± 0.91) × 103 M-1). Hydrogen bonding and van der Waals forces played a major role in driving the binding process. Molecular docking further confirmed the experimental results. This binding could stabilize DNA double helix structure, thereby protecting DNA from oxidative damage. This study may provide theoretical basis for designing new functional foods of baicalein for DNA damage protection.
Collapse
Affiliation(s)
- Rui Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Jian Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Fei-Yue Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
16
|
Liu X, Yue Y, Wu Y, Zhong K, Bu Q, Gao H. Discovering the antibacterial mode of action of 3‐
p
‐
trans
‐coumaroyl‐2‐hydroxyquinic acid, a natural phenolic compound, against
Staphylococcus aureus
through an integrated transcriptomic and proteomic approach. J Food Saf 2020. [DOI: 10.1111/jfs.12861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoyan Liu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center Sichuan University Chengdu China
| | - Yuxi Yue
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center Sichuan University Chengdu China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center Sichuan University Chengdu China
- Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province Sichuan University Chengdu China
| | - Kai Zhong
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center Sichuan University Chengdu China
- Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province Sichuan University Chengdu China
| | - Qian Bu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center Sichuan University Chengdu China
- Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province Sichuan University Chengdu China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center Sichuan University Chengdu China
- Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province Sichuan University Chengdu China
| |
Collapse
|