1
|
Duchowicz PR, Bennardi DO, Fioressi SE, Bacelo DE. Quantitative structure-insecticidal activity of essential oils on the human head louse ( Pediculus humanus capitis). SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:693-706. [PMID: 39212162 DOI: 10.1080/1062936x.2024.2394497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
In the search for natural and non-toxic products alternatives to synthetic pesticides, the fumigant and repellent activities of 35 essential oils are predicted in the human head louse (Pediculus humanus capitis) through the Quantitative Structure-Activity Relationships (QSAR) theory. The number of constituents of essential oils with weight percentage composition greater than 1% varies from 1 to 15, encompassing up to 213 structurally diverse compounds in the entire dataset. The 27,976 structural descriptors used to characterizing these complex mixtures are calculated as linear combinations of non-conformational descriptors for the components. This approach is considered simple enough to evaluate the effects that changes in the composition of each component could have on the studied bioactivities. The best linear regression models found, obtained through the Replacement Method variable subset selection method, are applied to predict 13 essential oils from a previous study with unknown property data. The results show that the simple methodology applied here could be useful for predicting properties of interest in complex mixtures such as essential oils.
Collapse
Affiliation(s)
- P R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, La Plata, Argentina
| | - D O Bennardi
- Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina
| | - S E Fioressi
- Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, CONICET, Villanueva, Buenos Aires, Argentina
| | - D E Bacelo
- Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, CONICET, Villanueva, Buenos Aires, Argentina
| |
Collapse
|
2
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
Zimmermann RC, Poitevin CG, da Luz TS, Mazarotto EJ, Furuie JL, Martins CEN, do Amaral W, Cipriano RR, da Rosa JM, Pimentel IC, Zawadneak MAC. Antifungal activity of essential oils and their combinations against storage fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48559-48570. [PMID: 36763278 DOI: 10.1007/s11356-023-25772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
We aimed to evaluate the fungicidal activity of essential oils (EOs) from Baccharis dracunculifolia (Asteraceae), Baccharis uncinella (Asteraceae), Mentha arvensis (Lamiaceae), Salvia officinalis (Lamiaceae), Melaleuca alternifolia (Myrtaceae), and Cymbopogon nardus (Poaceae) in the in vitro control of mycotoxin-producing strains of Aspergillus niger, Aspergillus nomius, Aspergillus flavus, and Fusarium graminearum. EOs' chemical composition was analyzed by gas chromatography-mass spectrometry, and a total of 19, 21, 18, 20, 17, and 15 compounds were identified in B. dracunculifolia, B. uncinella, S. officinalis, M. arvensis, M. alternifolia, and C. nardus EOs, respectively. Contact and volatilization bioassays were performed, for which M. alternifolia and C. nardus EOs had the greatest fungicidal effect (> 90%). Therefore, these EOs were evaluated for minimum inhibitory concentration, medium inhibitory concentration, and sporulation. Effects from the combined use of EOs were also evaluated. EOs interacted in combination, displaying an additive effect against F. graminearum and A. flavus and an antagonistic effect against the remaining isolates. We conclude that C. nardus EO was effective in the control of storage pathogens and that combined EOs can improve their antifungal effects.
Collapse
Affiliation(s)
- Rubens Candido Zimmermann
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil.
| | - Carolina Gracia Poitevin
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Thaisa Siqueira da Luz
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Edson José Mazarotto
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Jason Lee Furuie
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | | | - Wanderlei do Amaral
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Roger Raupp Cipriano
- Laboratory of Phytotechnology and Crop Protection, Federal University of Paraná, Curitiba, PR, Brazil
| | - Joatan Machado da Rosa
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Ida Chapaval Pimentel
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| | - Maria A C Zawadneak
- Department of Basic Pathology, Laboratory of Agricultural Entomology "Prof. A. M. da Costa Lima, Federal University of Paraná, Caixa Postal 19031, Curitiba, Paraná, CEP 81531-980, Brazil
| |
Collapse
|
4
|
Usseglio VL, Dambolena JS, Zunino MP. Can Essential Oils Be a Natural Alternative for the Control of Spodoptera frugiperda? A Review of Toxicity Methods and Their Modes of Action. PLANTS (BASEL, SWITZERLAND) 2022; 12:3. [PMID: 36616132 PMCID: PMC9823514 DOI: 10.3390/plants12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Spodoptera frugiperda is a major pest of maize crops. The application of synthetic insecticides and the use of Bt maize varieties are the principal strategies used for its control. However, due to the development of pesticide resistance and the negative impact of insecticides on the environment, natural alternatives are constantly being searched for. Accordingly, the objective of this review was to evaluate the use of essential oils (EOs) as natural alternatives for controlling S. frugiperda. This review article covers the composition of EOs, methods used for the evaluation of EO toxicity, EO effects, and their mode of action. Although the EOs of Ocimum basilicum, Piper marginatum, and Lippia alba are the most frequently used, Ageratum conyzoides, P. septuplinervium. O. gratissimum and Siparuna guianensis were shown to be the most effective. As the principal components of these EOs vary, then their mode of action on the pest could be different. The results of our analysis allowed us to evaluate and compare the potential of certain EOs for the control of this insect. In order to obtain comparable results when evaluating the toxicity of EOs on S. frugiperda, it is important that methodological issues are taken into account.
Collapse
Affiliation(s)
- Virginia L. Usseglio
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Cátedra de Química General, Faculta de Ciencias Exactas, Físicas y Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
| | - José S. Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Cátedras de Química Orgánica y Productos Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
| | - María P. Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Córdoba X5016GCN, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Córdoba X5016GCN, Argentina
- Cátedras de Química Orgánica y Productos Naturales (FCEFyN-UNC), Córdoba X5016GCN, Argentina
| |
Collapse
|
5
|
Duarte JA, Alves-Ribeiro G, Machado FP, Folly D, Peñaloza E, Garret R, Santos MG, Ventura JA, Wermelinger GF, Robbs BK, Rocha L, Fiaux SB. Glimpsing the chemical composition and the potential of Myrtaceae plant extracts against the food spoilage fungus Thielaviopsis ethacetica. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Devecioglu D, Turker M, Karbancioglu-Guler F. Antifungal Activities of Different Essential Oils and Their Electrospun Nanofibers against Aspergillus and Penicillium Species Isolated from Bread. ACS OMEGA 2022; 7:37943-37953. [PMID: 36312428 PMCID: PMC9609062 DOI: 10.1021/acsomega.2c05105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 05/26/2023]
Abstract
Mold growth, especially Aspergillus spp. and Penicillium spp., deteriorates the quality of bakery products. Essential oils (EOs) have been categorized as good natural antimicrobials. Hereby, this study aimed to evaluate the antifungal activity of six EOs, ginger, cumin, cinnamon, black pepper, origanum, and clove, and their volatile compounds against fungal strains isolated from bread: Penicillium carneum DDS4, Aspergillus flavus DDS6, and Aspergillus niger DDS7 by disc diffusion and disc volatilization methods, respectively. Among EOs, cumin, cinnamon, origanum, and clove were found to be effective against fungal strains, and their minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined. The observed lowest MIC value of EOs was obtained at 1000 μg/mL concentration, and the lowest MFC value was obtained from the results of clove at a concentration of 1000 μg/mL. Based on the MIC and MFC values, clove and cinnamon EOs were found to be more effective at lower concentrations. Electrospun nanofiber films of clove and cinnamon were produced with 6% poly(vinyl alcohol) (PVA), 2% β-cyclodextrin (β-CD), and 2% EO to overcome the unfavorable sensory impact of EOs on food products. The inhibitory activity of cinnamon EO film (2.64-2.51 log(CFU/mg)) was considerably lower than clove EO film (3.18-3.24 log(CFU/mg)) against P. carneum DDS4 and A. niger DDS7. Furthermore, these nanofiber films prevented fungal growth on bread samples visibly and were shown to be an alternative application for active food packaging.
Collapse
Affiliation(s)
- Dilara Devecioglu
- Faculty
of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, 34449 Maslak, Istanbul, Turkey
| | - Mustafa Turker
- Pak
Group, R & D Center, Köseköy
Mahallesi, Ankara Cad.
No. 277, 41310 Kartepe, Kocaeli, Turkey
| | - Funda Karbancioglu-Guler
- Faculty
of Chemical and Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, 34449 Maslak, Istanbul, Turkey
| |
Collapse
|
7
|
Pok PS, García Londoño VA, Vicente S, Pacin A, Alzamora SM, Resnik SL. Citrus flavonoids against Fusarium verticillioides in post-harvest maize: Minimization of fumonisins and alteration of fungal ultrastructure. J Appl Microbiol 2021; 132:2234-2248. [PMID: 34800317 DOI: 10.1111/jam.15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
AIMS To minimize fumonisins (FBs) accumulation by Fusarium verticillioides in post-harvest maize, using flavonoids obtained from citrus residues: naringin (NAR), neohesperidin (NEO), quercetin (QUER), and its mixtures. METHODS AND RESULTS Response surface methodology with Box-Behnken design was applied in maize at 0.98 and 0.95 aw . The optimal mixture found, composed of 0.40 mmol kg-1 NAR, 0.16 mmol kg-1 NEO and 0.37 mmol kg-1 QUER, reduced the accumulation of FBs B1, B2, and B3 by 88 ± 6%, 90 ± 6% and 85 ± 5%, respectively, when applied to maize at 0.98 aw . The mentioned mixture led to a 54 ± 9% reduction of fumonisin B1 accumulation in maize adjusted to 0.95 aw . These flavonoids applied individually and as a mixture, affected the structure of both the cell wall and the cytoplasm of F. verticillioides. The cell wall lost rigidity and the cells appeared highly deformed, with ruptured plasmalemma and disrupted endomembranes. CONCLUSIONS It was possible to diminish the accumulation of FBs in maize by a highly toxigenic Fusarium strain, producing severe damage to its ultrastructure. SIGNIFICANCE AND IMPACT OF STUDY The results indicate the possible use of flavonoids from citrus industry residues as natural and environmentally friendly antifungal agents to restrain the accumulation of FBs in stored maize.
Collapse
Affiliation(s)
- Paula Sol Pok
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Autónoma de Buenos Aires, Argentina.,Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor Alonso García Londoño
- Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Vicente
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| | - Ana Pacin
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Buenos Aires, Argentina
| | - Stella Maris Alzamora
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Liliana Resnik
- Departamentos de Química Orgánica e Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
8
|
Seepe HA, Nxumalo W, Amoo SO. Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects. Molecules 2021; 26:molecules26216539. [PMID: 34770948 PMCID: PMC8587185 DOI: 10.3390/molecules26216539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Many Fusarium species are pathogenic, causing crop diseases during crop production and spoilage of agricultural products in both commercial and smallholder farming. Fusarium attack often results into food contamination, yield loss and increases in food insecurity and food prices. Synthetic fungicides have been used as a control strategy for the management of crop diseases caused by Fusarium pathogens. The negative effects associated with application of many synthetic pesticides has necessitated the need to search for alternative control strategies that are affordable and environmentally safe. Research on medicinal plants as control agents for Fusarium pathogens has received attention since plants are readily available and they contain wide variety of secondary metabolites that are biodegradable. The activities of solvent extracts, essential oils and compounds from medicinal plants have been tested against Fusarium phytopathogenic species. A summary of recent information on antifungal activity of plants against Fusarium species is valuable for the development of biopesticides. This paper reviews the antifungal research conducted on medicinal plants against Fusarium pathogens, over a 10-year period, from January 2012 to May 2021. We also highlight the challenges and opportunities of using natural products from medicinal plants in crop protection. Several databases (Science Direct and Web of Science) were used to obtain information on botanical products used to control Fusarium diseases on crops. Keywords search used included natural products, antifungal, Fusarium, crops diseases, phytopathogenic, natural compounds and essential oil.
Collapse
Affiliation(s)
- Hlabana A. Seepe
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa
- Correspondence: (H.A.S.); (W.N.); (S.O.A.); Tel.: +27-12-808-8000 (H.A.S.); +27-15-268-2331 (W.N.); +27-12-808-8000 (S.O.A.)
| | - Winston Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, Polokwane 0727, South Africa
- Correspondence: (H.A.S.); (W.N.); (S.O.A.); Tel.: +27-12-808-8000 (H.A.S.); +27-15-268-2331 (W.N.); +27-12-808-8000 (S.O.A.)
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Correspondence: (H.A.S.); (W.N.); (S.O.A.); Tel.: +27-12-808-8000 (H.A.S.); +27-15-268-2331 (W.N.); +27-12-808-8000 (S.O.A.)
| |
Collapse
|
9
|
Oufensou S, Dessì A, Dallocchio R, Balmas V, Azara E, Carta P, Migheli Q, Delogu G. Molecular Docking and Comparative Inhibitory Efficacy of Naturally Occurring Compounds on Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium culmorum. Toxins (Basel) 2021; 13:toxins13110759. [PMID: 34822543 PMCID: PMC8623340 DOI: 10.3390/toxins13110759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
The fungal pathogen Fusarium culmorum causes Fusarium head blight in cereals, resulting in yield loss and contamination of the grain by type B trichothecene mycotoxins such as deoxynivalenol (DON), and its acetylated derivatives. Synthesis of trichothecenes is driven by a trichodiene synthase (TRI5) that converts farnesyl pyrophosphate (FPP) to trichodiene. In this work, 15 naturally occurring compounds that belong to the structural phenol and hydroxylated biphenyl classes were tested in vitro and in planta (durum wheat) to determine their inhibitory activity towards TRI5. In vitro analysis highlighted the fungicidal effect of these compounds when applied at 0.25 mM. Greenhouse assays showed a strong inhibitory activity of octyl gallate 5, honokiol 13 and the combination propyl gallate 4 + thymol 7 on trichothecene biosynthesis. Docking analyses were run on the 3D model of F. culmorum TRI5 containing the inorganic pyrophosphate (PPi) or FPP. Significant ligand affinities with TRI-PPi and TRI-FPP were observed for the same sites for almost all compounds, with 1 and 2 as privileged sites. Octyl gallate 5 and honokiol 13 interacted almost exclusively with sites 1 and 2, by concurrently activating strong H-bonds with common sets of amino acids. These results open new perspectives for the targeted search of naturally occurring compounds that may find practical application in the eco-friendly control of FHB in wheat.
Collapse
Affiliation(s)
- Safa Oufensou
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
- Correspondence:
| | - Alessandro Dessì
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (A.D.); (R.D.); (E.A.); (P.C.); (G.D.)
| | - Roberto Dallocchio
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (A.D.); (R.D.); (E.A.); (P.C.); (G.D.)
| | - Virgilio Balmas
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (V.B.); (Q.M.)
| | - Emanuela Azara
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (A.D.); (R.D.); (E.A.); (P.C.); (G.D.)
| | - Paola Carta
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (A.D.); (R.D.); (E.A.); (P.C.); (G.D.)
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy; (V.B.); (Q.M.)
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, Traversa La Crucca 3, 07100 Sassari, Italy; (A.D.); (R.D.); (E.A.); (P.C.); (G.D.)
| |
Collapse
|
10
|
Effect of Naturally Occurring Compounds on Fumonisin Production and fum Gene Expression in Fusarium verticillioides. AGRONOMY-BASEL 2021. [DOI: 10.3390/agronomy11061060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fusarium verticillioides, one of the most common pathogens in maize, is responsible for yield losses and reduced kernel quality due to contamination by fumonisins (FBs). Two F. verticillioides isolates that differed in their ability to produce FBs were treated with a selection of eight natural phenolic compounds with the aim of identifying those that were able to decrease toxin production at concentrations that had a limited effect on fungal growth. Among the tested compounds, ellagic acid and isoeugenol, which turned out to be the most effective molecules against fungal growth, were assayed at lower concentrations, while the first retained its ability to inhibit toxin production in vitro, the latter improved both the fungal growth and FB accumulation. The effect of the most effective phenolic compounds on FB accumulation was also tested on maize kernels to highlight the importance of appropriate dosages in order to avoid conditions that are able to promote mycotoxin biosynthesis. An expression analysis of genes involved in FB production allowed more detailed insights into the mechanisms underlying the inhibition of FBs by phenolic compounds. The expression of the fum gene was generally down-regulated by the treatments; however, some treatments in the low-producing F. verticillioides strain up-regulated fum gene expression without improving FB production. This study showed that although different phenolic compounds are effective for FB reduction, they can modulate biosynthesis at the transcription level in opposite manners depending on strain. In conclusion, on the basis of in vitro and in vivo screening, two out of the eight tested phenols (ellagic acid and carvacrol) appear to be promising alternative molecules for the control of FB occurrence in maize.
Collapse
|
11
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
12
|
Duchowicz PR, Bennardi DO, Ortiz EV, Comelli NC. QSAR models for insecticidal properties of plant essential oils on the housefly ( Musca domestica L.). SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:395-410. [PMID: 33870800 DOI: 10.1080/1062936x.2021.1905711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The fumigant and topical activities exhibited by 27 plant-derived essentials oils (EOs) on adult M. domestica housefly are predicted through the Quantitative Structure-Activity Relationship (QSAR) theory. These molecular structure based calculations are performed on 253 structurally diverse compounds from the EOs, where the number of constituents in each essential oil mixture varies between 2 to 24. A large number of 86,048 non-conformational mixture descriptors are derived as linear combinations of the molecular descriptors of the EO components. Two strategies are compared for the mixture descriptor formulation, which consider or avoid the use of the chemical composition. The multivariable linear regression QSAR models of the present work are useful for fumigant and topical applications, describing predictive parallelisms for the insecticidal activity of the analysed complex mixtures.
Collapse
Affiliation(s)
- P R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, La Plata, Argentina
| | - D O Bennardi
- Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, La Plata, Argentina
| | - E V Ortiz
- Instituto de Monitoreo y Control de la Degradación Geoambiental (IMCoDeG), CONICET, Facultad de Tecnología y Ciencias Aplicadas, Universidad Nacional de Catamarca, Catamarca, Argentina
| | - N C Comelli
- Centro de Investigaciones y Transferencia de Catamarca (CITCA), CONICET, Universidad Nacional de Catamarca, Catamarca, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, Argentina
| |
Collapse
|
13
|
Achimón F, Brito VD, Pizzolitto RP, Ramirez Sanchez A, Gómez EA, Zygadlo JA. Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Rev Argent Microbiol 2021; 53:292-303. [PMID: 33546971 DOI: 10.1016/j.ram.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to analyze the chemical composition of Curcuma longa, Pimenta dioica, Rosmarinus officinalis, and Syzygium aromaticum essential oils (EOs) and their antifungal and anti-conidiogenic activity against Fusarium verticillioides. The chemical profile of the EOs was determined by GC/MS. The antifungal and anti-conidiogenic activities were evaluated by the agar dilution method. The tested concentrations were 1000ppm, 500ppm, 250ppm and 125ppm. S. aromaticum EO exhibited the highest antifungal effect, followed by P. dioica and to a lesser extent C. longa. The major compounds of these EOs were eugenol (88.70% in S. aromaticum and 16.70% in P. dioica), methyl eugenol (53.09% in P. dioica), and α-turmerone (44.70%), β-turmerone (20.67%), and Ar-turmerone (17.27%) in C. longa. Rosmarinus officinalis poorly inhibited fungal growth; however, it was the only EO that inhibited conidial production, with its major components being 1,8-cineole (53.48%), α-pinene (15.65%), and (-)-camphor (9.57%). Our results showed that some compounds are capable of decreasing mycelial growth without affecting sporulation, and vice versa. However, not all the compounds of an EO are responsible for its bioactivity. In the present work, we were able to identify different major compounds or mixtures of major compounds that were responsible for antifungal and anti-conidiogenic effects. Further experiments combining these pure components are necessary in order to achieve a highly bioactive natural formulation against the phytopathogenic fungus F. verticillioides.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Vanessa D Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina.
| | | | - Elisa A Gómez
- Instituto de Innovación en Biotecnología e Industria (IIBI), Santo Domingo, Dominican Republic
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina; Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| |
Collapse
|
14
|
QSAR models for the fumigant activity prediction of essential oils. J Mol Graph Model 2020; 101:107751. [DOI: 10.1016/j.jmgm.2020.107751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022]
|
15
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
16
|
Usseglio VL, Dambolena JS, Martinez MJ, Zunino MP. The Role of Fumonisins in the Biological Interaction between Fusarium verticillioides and Sitophilus zeamais. J Chem Ecol 2020; 46:1059-1068. [PMID: 32946025 DOI: 10.1007/s10886-020-01220-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023]
Abstract
The aim of the current study was to investigate the entomopathogenic capacity of the mold Fusarium verticillioides and the effect of its mycotoxins fumonisins, on the grain beetle Sitophilus zeamais. We evaluated the capacity of this fungus to infect live insects, the antifungal activity of constituents of the insect's epicuticle, and the effect of a fumonisin extract on the fitness of the insects. We found that F. verticillioides could not penetrate the cuticle of S. zeamais and that the fumonisin extract had no negative effects on the fitness of the insects. However, the progeny of the insects increased, and the fumonisin extract had repellent effects. This is the first report about the effects of fumonisins on the relationship between F. verticillioides and S. zeamais, which may provide useful information about interactions between pathogenic microorganisms and insects, especially on stored product pests.
Collapse
Affiliation(s)
- V L Usseglio
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina
| | - J S Dambolena
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina. .,Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina.
| | - M J Martinez
- Área Mejoramiento Genético Vegetal (EEA INTA Manfredi), Ruta N° 9 km 636, Manfredi, Córdoba, Argentina
| | - M P Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBiV-CONICET-UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN-UNC), Av. Vélez Sarsfield 1611, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
17
|
Appell M, Tu YS, Compton DL, Evans KO, Wang LC. Quantitative structure-activity relationship study for prediction of antifungal properties of phenolic compounds. Struct Chem 2020. [DOI: 10.1007/s11224-020-01549-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|