1
|
Rivas MÁ, Casquete R, Gonçalves Dos Santos MTP, Benito MJ. An overview of the antifungal potential for aromatic plant extracts in agriculture and the food industry: A comprehensive analysis focusing on the Rubus, Cistus and Quercus genera against fungal infections of crops and food. Int J Food Microbiol 2025; 436:111209. [PMID: 40253950 DOI: 10.1016/j.ijfoodmicro.2025.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
This review article provides an overview of current research on aromatic plant extracts, particularly from the genera Rubus, Cistus and Quercus. These plants are characterized by their abundance in certain ecosystems such as dehesa, their robustness and adaptability to the environment, but despite their abundance in these regions, they remain relatively underutilized. In this review, the chemical profiles of plant extracts from these genera, the methodologies used for extraction of bioactive compounds and antifungal capabilities of are thoroughly investigated. Plants from Rubus, Cistus and Quercus genera are known for their richness in bioactive constituents, including terpenoids, flavonoids and phenols, which exhibit notable antifungal activities against various pathogenic fungi. Furthermore, the article explores future directions for the development and utilization of these extracts in agricultural and food sectors, underscoring their potential as natural and sustainable substitutes for synthetic fungicides. This comprehensive analysis explores the potential role of aromatic plant extracts in contributing to crop health, food safety, and environmentally sustainable agricultural practices, while recognizing the need for further research to fully substantiate their applications in these areas. The utilization of these plants not only aids in the preservation and promotion of biodiversity and environmental sustainability but also has the potential to create new products and markets, thereby providing economic benefits to the ecosystems where they are cultivated.
Collapse
Affiliation(s)
- María Ángeles Rivas
- School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| | - Rocío Casquete
- School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain.
| | | | - María José Benito
- School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; University Institute of Agro-Food Resources Research (INURA), Campus Universitario, University of Extremadura, Avda. de la Investigación s/n, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Yi Y, Liu R, Shang Z, Wang K, Zhang C, Wang Z, Lou Y, Liu J, Li P. Peppermint Essential Oil For Controlling Aspergillus flavus and Analysis of its Antifungal Action Mode. Curr Microbiol 2025; 82:140. [PMID: 39964459 DOI: 10.1007/s00284-025-04116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/02/2025] [Indexed: 03/20/2025]
Abstract
Aspergillus flavus contamination has long been a major problem in the food and agriculture industries, while peppermint essential oil (PEO) is increasingly recognized as an effective alternative for controlling fungal spoilage. However, its biocontrol effect and action mode on A. flavus have rarely been reported. Here, the inhibition rates of PEO on A. flavus were determined by the plate fumigation and mycelial dry weight method. The minimum inhibitory concentration (MIC) was identified as 0.343 μL/mL. In the biocontrol tests, the moldy rates of maize kernels, wheat grains, and peanut kernels in the PEO treatment group were significantly reduced by 65%, 72%, and 63.33%, respectively. The biocontrol efficacy of PEO on maize kernels, wheat grains, and peanut kernels reached 80.67%, 82%, and 67.67%, respectively. Furthermore, antifungal action mode analysis showed that PEO changed the mycelial morphology, damaged the integrity of cell wall and membrane. Moreover, it reduced the ergosterol content, elevated the malondialdehyde content, increased the relative conductivity, and led to the intracellular leakage of nucleic acids and proteins, thereby enhancing the cell membrane permeability. In addition, PEO decreased the antioxidant-related catalase (CAT) and superoxide dismutase (SOD) activities, significantly increased the hydrogen peroxide (H2O2) content, and induced the accumulation of reactive oxygen species (ROS) in the mycelia. In conclusion, this study confirms that PEO, as an effective natural antimicrobial agent, has good application prospects in controlling the spoilage of A. flavus during grain storage and preventing food mold.
Collapse
Affiliation(s)
- Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
- Institute for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Luohe, 462300, China.
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China.
| | - Rumeng Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zijun Shang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Kai Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Changfu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Zihao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Yu Lou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Jiaoyang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- The Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, 450001, China
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Peralta-Ruiz Y, Molina Hernandez JB, Grande-Tovar CD, Serio A, Valbonetti L, Chaves-López C. Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules 2024; 29:3516. [PMID: 39124920 PMCID: PMC11314608 DOI: 10.3390/molecules29153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, β-galactosidase, β-glucosidase, and N-acetyl-β-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Junior Bernardo Molina Hernandez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Luca Valbonetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Clemencia Chaves-López
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| |
Collapse
|
4
|
Mozafari Z, Shams-Ghahfarokhi M, Yahyazadeh M, Razzaghi-Abyaneh M. Effects of Tripleurospermum caucasicum, Salvia rosmarinus and Tanacetum fruticulosum essential oils on aflatoxin B 1 production and aflR gene expression in Aspergillus flavus. Int J Food Microbiol 2024; 415:110639. [PMID: 38417281 DOI: 10.1016/j.ijfoodmicro.2024.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most hazardous mycotoxins for humans and livestock that mainly produced by members of the genus Aspergillus in a variety of food commodities. In this study, the effect of S. rosmarinus, T. fruticulosum, and T. caucasicum essential oils (EOs) was studied on fungal growth, AFB1 production and aflR gene expression in toxigenic A. flavus IPI 247. The AFB1 producer A. flavus strain was cultured in YES medium in presence of various two-fold concentrations of the plant EOs (62.5-500 μg/mL) for 4 days at 28 °C. EO composition of plants was analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). The amount of fungal growth, ergosterol content of fungal mycelia and AFB1 content of EO-treated and non-treated controls were measured. The expression of aflR gene was evaluated using Real-time PCR in the fungus exposed to minimum inhibitory concentration (MIC50) of EOs. The main constituents of the oils analyzed by GC/MS analysis were elemicin (33.80 %) and 2,3-dihydro farnesol (33.19 %) in T. caucasicum, 1,8-cineole (17.87 %), trans-caryophyllene (11.14 %), α and ẞ-pinene (10.92 and 8.83 %) in S. rosmarinus, and camphor (17.65 %), bornyl acetate (15.08 %), borneol (12.48 %) and camphene (11.72 %) in T. fruticulosum. The results showed that plant EOs at the concentration of 500 μg/mL suppressed significantly the fungal growth by 35.24-71.70 %, while mycelial ergosterol content and AFB1 production were inhibited meaningfully by 36.20-65.51 % and 20.61-89.16 %. T. caucasicum was the most effective plant, while T. fruticulosum showed the lowest effectiveness on fungal growth and AFB1 production. The expression of aflR in T. caucasicum and S. rosmarinus -treated fungus was significantly down-regulated by 2.85 and 2.12 folds, respectively, while it did not change in T. fruticulosum-treated A. flavus compared to non-treated controls. Our findings on the inhibitory activity of T. caucasicum and S. rosmarinus EOs toward A. flavus growth and AFB1 production could promise these plants as good candidates to control fungal contamination of agricultural crops and food commodities and subsequent contamination by AFB1. Down-regulation of aflR as the key regulatory gene in AF biosynthesis pathway warrants the use of these plants in AF control programs. Further studies to evaluate the inhibitory activity of studied plants EOs in food model systems are recommended.
Collapse
Affiliation(s)
- Zahra Mozafari
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Masoomeh Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran.
| | - Mahdi Yahyazadeh
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, Iran
| | | |
Collapse
|
5
|
Almeida NA, Freire L, Carnielli-Queiroz L, Bragotto APA, Silva NCC, Rocha LO. Essential oils: An eco-friendly alternative for controlling toxigenic fungi in cereal grains. Compr Rev Food Sci Food Saf 2024; 23:e13251. [PMID: 38284600 DOI: 10.1111/1541-4337.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 01/30/2024]
Abstract
Fungi are widely disseminated in the environment and are major food contaminants, colonizing plant tissues throughout the production chain, from preharvest to postharvest, causing diseases. As a result, grain development and seed germination are affected, reducing grain quality and nutritional value. Some fungal species can also produce mycotoxins, toxic secondary metabolites for vertebrate animals. Natural compounds, such as essential oils, have been used to control fungal diseases in cereal grains due to their antimicrobial activity that may inhibit fungal growth. These compounds have been associated with reduced mycotoxin contamination, primarily related to reducing toxin production by toxigenic fungi. However, little is known about the mechanisms of action of these compounds against mycotoxigenic fungi. In this review, we address important information on the mechanisms of action of essential oils and their antifungal and antimycotoxigenic properties, recent technological strategies for food industry applications, and the potential toxicity of essential oils.
Collapse
Affiliation(s)
- Naara A Almeida
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luísa Freire
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Cidade Universitária, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lorena Carnielli-Queiroz
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-Espírito Santo, Brazil
| | - Adriana P A Bragotto
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Nathália C C Silva
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Fincheira P, Jofré I, Espinoza J, Levío-Raimán M, Tortella G, Oliveira HC, Diez MC, Quiroz A, Rubilar O. The efficient activity of plant essential oils for inhibiting Botrytis cinerea and Penicillium expansum: Mechanistic insights into antifungal activity. Microbiol Res 2023; 277:127486. [PMID: 37742453 DOI: 10.1016/j.micres.2023.127486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Botrytis cinerea and Penicillium expansum produce deterioration in fruit quality, causing losses to the food industry. Thus, plant essential oils (EOs) have been proposed as a sustainable alternative for minimizing the application of synthetic fungicides due to their broad-spectrum antifungal properties. This study investigated the efficacy of five EOs in suppressing the growth of B. cinerea and P. expansum and their potential antifungal mechanisms. EOs of Mentha × piperita L., Origanum vulgare L., Thymus vulgaris L., Eucalyptus globules Labill., and Lavandula angustifolia Mill., were screened for both fungi. The results showed that the EO of T. vulgaris and O. vulgare were the most efficient in inhibiting the growth of B. cinerea and P. expansum. The concentration increase of all EO tested increased fungi growth inhibition. Exposure of fungi to EOs of T. vulgaris and O. vulgare increased the pH and the release of constituents absorbing 260 nm and soluble proteins, reflecting membrane permeability alterations. Fluorescence microscopic examination revealed that tested EOs produce structural alteration in cell wall component deposition, decreasing the hypha width. Moreover, propidium iodide and Calcein-AM stains evidenced the loss of membrane integrity and reduced cell viability of fungi treated with EOs. Fungi treated with EOs decreased the mitochondria activity and the respiratory process. Therefore, these EOs are effective antifungal agents against B. cinerea and P. expansum, which is attributed to changes in the cell wall structure, the breakdown of the cell membrane, and the alteration of the mitochondrial activity.
Collapse
Affiliation(s)
- Paola Fincheira
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| | - Ignacio Jofré
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Laboratory of Geomicrobiology, Department of Chemical Sciences and Natural Resources. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Javier Espinoza
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Sciences and Natural Resources. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Marcela Levío-Raimán
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Gonzalo Tortella
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86057-970 Londrina, PR, Brazil
| | - María Cristina Diez
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Andrés Quiroz
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Sciences and Natural Resources. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Olga Rubilar
- Center of Excellence in Biotechnological Research Applied to the Environment (CIBAMA-UFRO), Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering. Faculty of Engineering and Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| |
Collapse
|
7
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
8
|
Satterlee T, McDonough CM, Gold SE, Chen C, Glenn AE, Pokoo-Aikins A. Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed. Toxins (Basel) 2023; 15:635. [PMID: 37999498 PMCID: PMC10675374 DOI: 10.3390/toxins15110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Organic acids and essential oils are commonly used in the poultry industry as antimicrobials and for their beneficial effects on gut health, growth performance, and meat quality. A common postharvest storage fungal colonist, Aspergillus flavus, contaminates corn, the primary component of poultry feed, with the highly detrimental mycotoxin, aflatoxin. Aflatoxin adversely affects poultry feed intake, feed conversion efficiency, weight gain, egg production, fertility, hatchability, and poultry meat yield. Both organic acids and essential oils have been reported to inhibit the growth of A. flavus. Thus, we evaluated if the inhibitory synergy between combined essential oils (cinnamon, lemongrass, and oregano) and organic acids (acetic, butyric, and propionic) prevents A. flavus growth. The study confirmed that these compounds inhibit the growth of A. flavus and that synergistic interactions do occur between some of them. Overall, cinnamon oil was shown to have the highest synergy with all the organic acids tested, requiring 1000 µL/L air of cinnamon oil and 888 mg/kg of butyric acid to fully suppress A. flavus growth on corn kernels. With the strong synergism demonstrated, combining certain essential oils and organic acids offers a potentially effective natural method for controlling postharvest aflatoxin contamination in poultry feed.
Collapse
Affiliation(s)
- Tim Satterlee
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Callie Megan McDonough
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Scott E. Gold
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 110 Cedar Street, Athens, GA 30602, USA;
| | - Anthony E. Glenn
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Anthony Pokoo-Aikins
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| |
Collapse
|
9
|
Inhibitory Effect and Mechanism of Dill Seed Essential Oil on Neofusicoccum parvum in Chinese Chestnut. SEPARATIONS 2022. [DOI: 10.3390/separations9100296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The chestnut postharvest pathogen Neofusicoccum parvum (N. parvum) is an important postharvest pathogen that causes chestnut rot. Chestnut rot in postharvest reduces food quality and causes huge economic losses. This study aimed to evaluate the inhibitory effect of dill seed essential oil (DSEO) on N. parvum and its mechanism of action. The chemical characterization of DSEO by gas chromatography/mass spectrometry (GC/MS) showed that the main components of DSEO were apiole, carvone, dihydrocarvone, and limonene. DSEO inhibited the growth of mycelium in a dose-dependent manner. The antifungal effects are associated with destroying the fungal cell wall (cytoskeleton) and cell membrane. In addition, DSEO can induce oxidative damage and intracellular redox imbalance to damage cell function. Transcriptomics analysis showed DSEO treatment induced differently expressed genes most related to replication, transcription, translation, and lipid, DNA metabolic process. Furthermore, in vivo experiments showed that DSEO and DSEO emulsion can inhibit the growth of fungi and prolong the storage period of chestnuts. These results suggest that DSEO can be used as a potential antifungal preservative in food storage.
Collapse
|
10
|
Ji M, Li J, Fan L. Study on the antifungal effect and mechanism of oregano essential oil fumigation against
Aspergillus flavus. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mengmeng Ji
- State Key laboratory of Food Science & Technology Jiangnan University Wuxi Jiangsu China
- School of Food Science and Technology Jiangnan University, 1800 Lihu Avenue Wuxi Jiangsu China
| | - Jinwei Li
- State Key laboratory of Food Science & Technology Jiangnan University Wuxi Jiangsu China
- School of Food Science and Technology Jiangnan University, 1800 Lihu Avenue Wuxi Jiangsu China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology Jiangnan University Wuxi Jiangsu China
- School of Food Science and Technology Jiangnan University, 1800 Lihu Avenue Wuxi Jiangsu China
| |
Collapse
|
11
|
Zhou H, Sun F, Lin H, Fan Y, Wang C, Yu D, Liu N, Wu A. Food bioactive compounds with prevention functionalities against fungi and mycotoxins: developments and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Brandão RM, Cardoso MDG, de Oliveira JE, Barbosa RB, Ferreira VRF, Campolina GA, Martins MA, Nelson DL, Batista LR. Antifungal and antiocratoxigenic potential of Alpinia speciosa and Cymbopogon flexuosus essential oils encapsulated in poly(lactic acid) nanofibers against Aspergillus fungi. Lett Appl Microbiol 2022; 75:281-292. [PMID: 35313037 DOI: 10.1111/lam.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
Essential oils encapsulated in a polymeric matrix can be used as an alternative method to control fungi and mycotoxins. The essential oils were extracted by hydrodistillation and characterized by gas chromatography. The nanofibers were produced from poly (acid lactic) (PLA) containing essential oils by the Solution Blow Spinning method. The antifungal and antimicotoxygenic properties were evaluated against Aspergillus ochraceus and Aspergillus westerdijkiae by the fumigation method. Terpinen-4-ol (20.23%), sabinene (20.18%), 1.8-cineole (16.69%), and γ-terpinene (11.03%) were the principal compounds present in the essential oil from Alpinia speciosa, whereas citral (97.67%) was dominant from Cymbopogon flexuosus. Microscopy images showed that the addition of essential oils caused an increase in the diameter of the nanofibers. The infrared spectroscopy results indicated the presence of essential oils in the PLA nanofibers. Differential scanning calorimetry curves also indicated the existence of interactions between the essential oils and polymeric macromolecules through their plasticizing action. The hydrophobic character of nanofibers was revealed by the contact angle technique. An antifungal effect was observed, the mycelial growths (3.25-100%) and the synthesis of ochratoxin A (25.94-100%) were inhibited by the presence of the nanofibers. The results suggest that bioactive nanofibers hold promise for application to control toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Luís Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| |
Collapse
|
14
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
15
|
Liu P, Cai Y, Wang R, Li B, Weng Q. Effect of Ethylenediaminetetraacetic acid (EDTA) on perillaldehyde-mediated regulation of postharvest Aspergillus flavus growth on peanuts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Hu J, Zheng M, Dang S, Shi M, Zhang J, Li Y. Biocontrol Potential of Bacillus amyloliquefaciens LYZ69 Against Anthracnose of Alfalfa ( Medicago sativa). PHYTOPATHOLOGY 2021; 111:1338-1348. [PMID: 33325723 DOI: 10.1094/phyto-09-20-0385-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracnose is a destructive disease of alfalfa (Medicago sativa) that causes severe yield losses. Biological control can be an effective and eco-friendly approach to control this alfalfa disease. In the present study, Bacillus amyloliquefaciens LYZ69, previously isolated from healthy alfalfa roots, showed a strong in vitro antifungal activity against Colletotrichum truncatum, an important causal agent of anthracnose of alfalfa. The strain LYZ69 protected alfalfa plants (biocontrol efficacy of 82.59%) from anthracnose under greenhouse conditions. The cell-free culture (CFC) of LYZ69 (20%, vol/vol) caused 60 and 100% inhibition of mycelial growth and conidial germination, respectively. High-performance liquid chromatography tandem mass spectrometry separated and identified cyclic lipopeptides (LPs) such as bacillomycin D and fengycin in the CFC of LYZ69. Light microscopy and scanning electron microscopy revealed that the mixture of cyclic LPs produced by LYZ69 caused drastic changes in mycelial morphology. Fluorescence microscopy showed that the LPs induced reactive oxygen species accumulation and caused apoptosis-like cell death in C. truncatum hyphae. In summary, our findings provide evidence to support B. amyloliquefaciens LYZ69 as a promising candidate for the biological control of anthracnose in alfalfa.
Collapse
Affiliation(s)
- Jinling Hu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mingzhu Zheng
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shuzhong Dang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Shi
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
17
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
18
|
Li SF, Zhang SB, Lv YY, Zhai HC, Li N, Hu YS, Cai JP. Metabolomic analyses revealed multifaceted effects of hexanal on Aspergillus flavus growth. Appl Microbiol Biotechnol 2021; 105:3745-3757. [PMID: 33880599 DOI: 10.1007/s00253-021-11293-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Hexanal, a natural volatile organic compound, exerts antifungal activity against Aspergillus flavus; however, the mechanisms underlying these effects are unclear. In this study, we found that the growth of A. flavus mycelium was completely inhibited following exposure to 0.4 μL/mL hexanal (minimal inhibitory concentration). A detailed metabolomics survey was performed to identify changes in metabolite production by A. flavus cells after exposure to 1/2 the minimal inhibitory concentration of hexanal for 6 h, which revealed significant differences in 70 metabolites, including 20 upregulated and 50 downregulated metabolites. Among them, levels of L-malic acid, α-linolenic acid, phosphatidylcholine, D-ribose, riboflavin, D-mannitol, D-sorbitol, and deoxyinosine were significantly reduced. The metabolomics results suggest that the metabolites are mainly involved in the tricarboxylic acid cycle (TCA), ABC transport system, and membrane synthesis in A. flavus cells. Hexanal treatment reduced succinate dehydrogenase and mitochondrial dehydrogenase activity and stimulated superoxide anion and hydrogen peroxide accumulation in A. flavus mycelia. Increases in the electric conductivity and A260nm of the culture supernatant indicated cell membrane leakage. Therefore, hexanal appears to disrupt cell membrane synthesis, induce mitochondrial dysfunction, and increase oxidative stress in A. flavus mycelia. KEY POINTS: • Metabolite changes of A. flavus mycelia were identified after hexanal treatment. • Most differential metabolites were downregulated in hexanal-treated A. flavus. • An antifungal model of hexanal against A. flavus was proposed.
Collapse
Affiliation(s)
- Sheng-Fa Li
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China.
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Huan-Chen Zhai
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Na Li
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| | - Jing-Ping Cai
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, China
| |
Collapse
|
19
|
Li T, Chen M, Ren G, Hua G, Mi J, Jiang D, Liu C. Antifungal Activity of Essential Oil From Zanthoxylum armatum DC. on Aspergillus flavus and Aflatoxins in Stored Platycladi Semen. Front Microbiol 2021; 12:633714. [PMID: 33815316 PMCID: PMC8017187 DOI: 10.3389/fmicb.2021.633714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
The major objective of this study was to evaluate the inhibitory effect of essential oil (EO) from Zanthoxylum armatum DC. on Aspergillus flavus. The chemical composition of the EO was identified by gas chromatography–mass spectrometer. The minimum inhibitory concentration (MIC) of EO was investigated by liquid fermentation. The morphology, colony number, and aflatoxin content of A. flavus in platycladi semen were investigated by stereomicroscopy, scanning electron microscopy, plate counting, and high-performance liquid chromatography. The results indicated that the MIC of EO was 0.8 μL⋅mL–1, and the main components were β-phellandrene (7.53%), D-limonene (13.24%), linalool (41.73%), terpinen-4-ol (5.33%), and trans-nerolidol (6.30%). After the EO fumigated the platycladi semen, the growth of A. flavus slowed, and the mycelium shrank considerably. The number of colonies after EO treatment at room temperature and cold storage was significantly reduced, the inhibition effect was better under cold storage, and the aflatoxin B1 content did not exceed the standard within 100 days. Therefore, this study demonstrated the good potential of A. flavus growth inhibition during the storage of platycladi semen.
Collapse
Affiliation(s)
- Ting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guodong Hua
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiu Mi
- Tibet University of Tibetan Medicine, Lhasa, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunsheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Makhuvele R, Naidu K, Gbashi S, Thipe VC, Adebo OA, Njobeh PB. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020; 6:e05291. [PMID: 33134582 PMCID: PMC7586119 DOI: 10.1016/j.heliyon.2020.e05291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Mycotoxins present a great concern to food safety and security due to their adverse health and socio-economic impacts. The necessity to formulate novel strategies that can mitigate the economic and health effects associated with mycotoxin contamination of food and feed commodities without any impact on public health, quality and nutritional value of food and feed, economy and trade industry become imperative. Various strategies have been adopted to mitigate mycotoxin contamination but often fall short of the required efficacy. One of the promising approaches is the use of bioactive plant components/metabolites synergistically with mycotoxin-absorbing components in order to limit exposure to these toxins and associated negative health effects. In particular, is the fabrication of β-cyclodextrin-based nanosponges encapsulated with bioactive compounds of plant origin to inhibit toxigenic fungi and decontaminate mycotoxins in food and feed without leaving any health and environmental hazard to the consumers. The present paper reviews the use of botanicals extracts and their phytochemicals coupled with β-cyclodextrin-based nanosponge technology to inhibit toxigenic fungal invasion and detoxify mycotoxins.
Collapse
Affiliation(s)
- Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Kayleen Naidu
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Velaphi C Thipe
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa.,Laboratório de Ecotoxicologia - Centro de Química e Meio Ambiente - Instituto de Pesquisas Energéticas e Nucleares (IPEN) - Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, Av. Lineu Prestes, 2242 - Butantã, 05508-000, São Paulo, Brazil
| | - Oluwafemi A Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein Campus, Gauteng, 2028, South Africa
| |
Collapse
|
21
|
Brandão RM, Ferreira VRF, Batista LR, Alves E, Lira NDA, Bellete BS, Scolforo JRS, Cardoso MDG. Antifungal and antimycotoxigenic effect of the essential oil of
Eremanthus erythropappus
on three different
Aspergillus
species. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Luís Roberto Batista
- Departamento de Ciência dos Alimentos Universidade Federal de Lavras (UFLA) Lavras Brazil
| | - Eduardo Alves
- Departamento de Fitopatologia Universidade Federal de Lavras (UFLA) Lavras Brazil
| | | | | | | | | |
Collapse
|