1
|
Dasalkar AH, Biswas A, Chaudhari SR, Yannam SK. Effect of UV-C LEDs and heat treatments on microbial safety, chemical and sensory properties of sweet lime juice. Food Chem 2025; 474:143120. [PMID: 39908822 DOI: 10.1016/j.foodchem.2025.143120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/30/2024] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
This study investigated the effect of 280 nm Ultraviolet-C light emission diodes (UV-C LEDs) on the microbial safety and quality attributes of sweet lime juice (SLJ), focusing on E. coli and L. monocytogenes. SLJ samples were irradiated with dosages of 0, 252.96, 505.92, and 758.88 mJ/cm2. At 758.88 mJ/cm2, significant microbial reduction up to 5.45 and 6 log10 CFU/mL for E. coli and L. monocytogenes were achieved, respectively. Physicochemical properties, colour, browning index, aroma, and flavour profile were assessed. Results showed no significant changes in pH and titratable acidity, except in heattreated samples. Colour and browning index were affected in heat and UV-C LEDs treated samples. E-Nose and E-Tongue analysis indicated minimal changes in aroma and significant changes in taste profiles. Nineteen compounds were identified and quantified using 1H NMR spectroscopy. UV-C LEDs reduced microbial contamination without modifying physicochemical and sensory properties, offering a viable alternative to traditional heat treatments.
Collapse
Affiliation(s)
- Akshay H Dasalkar
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anisha Biswas
- Department of Plantation Products, Spice and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Chaudhari
- Department of Plantation Products, Spice and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudheer Kumar Yannam
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Fan L, Yang G, Li M, Xu J, Zhou D, Li R, Wang S. Radio frequency heating assisted Maillard reaction of whey protein - gum Arabic: Improving structural and unlocking functional properties. Int J Biol Macromol 2025; 293:139341. [PMID: 39743097 DOI: 10.1016/j.ijbiomac.2024.139341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Whey protein (WP) is a highly nutritious animal protein, but its functional properties are sensitive to environmental factors, such as temperature, pH, and ionic strength, which prevent its applications in various food systems. The conjugation of proteins with polysaccharides via the Maillard reaction is an efficient method to improve their functionalities. The purpose of this study was to use radio frequency (RF) heating technology to assist the covalent coupling of WP and gum Arabic (GA) for improving their grafting efficiency and functional properties. Results showed that under the optimal condition of RF heating, the degree of glycosylation (DG) of the conjugate could reach 19.19%, while the maximum DG value of the conjugate obtained by water bath (WB) heating was only 10.60%. There was a good correlation between the DG and dielectric properties of WP-GA conjugates. Structural analysis revealed that compared with their mixtures, the network structure of WP-GA conjugates was clear, the content of β-turn and random coil increased, and the fluorescence intensity and surface hydrophobicity decreased. In addition, glycosylation enhanced the emulsifying, foaming, and antioxidant properties of WP-GA conjugates. This study indicates that the RF heating technology has potential application values in the glycosylation modification of proteins.
Collapse
Affiliation(s)
- Liumin Fan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengge Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dingting Zhou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China.
| |
Collapse
|
3
|
Wang F, Zhu D, Wu D, Zhang Y, Yang M, Cao X, Liu H. Effect of bacterial diversity on the quality of fermented apple juice during natural fermentation of Hanfu apples. Food Sci Biotechnol 2024; 33:3515-3526. [PMID: 39493396 PMCID: PMC11525365 DOI: 10.1007/s10068-024-01593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/23/2024] [Accepted: 04/30/2024] [Indexed: 11/05/2024] Open
Abstract
The fermented cloudy apple juice (FCAJ) bacterial phase was analyzed by 16S rRNA gene-based sequencing. During fermentation, the bacterial phase transition promoted quality changes, such as carbohydrate, organic acid, total phenol, taste and volatiles of FCAJ. Citrobacter and Lactobacillus were the dominant bacterial genera of Hanfu apple juice by natural fermentation, and lactic acid was the most abundant organic acid in FCAJ. Citrobacter showed a continuous increase trend along with fermentation time, while Lactobacillus showed a slight decrease during the later period of fermentation. The contents of total phenolic and flavonoid both showed a trend of rising first and then decreasing in FCAJ during fermentation. Alcohols and esters, the main aromatic volatiles in FCAJ, showed significant increases, especially for ethanol, 3-methyl-1-butanol and ethyl acetate. Citrobacter presented a higher correlation than Lactobacillus with some volatile flavor.
Collapse
Affiliation(s)
- Fangping Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| | - Doudou Wu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| | - Yueyi Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| | - Minhui Yang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013 Liaoning China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013 Liaoning China
| |
Collapse
|
4
|
Jia H, Cai R, Yue T, Xie Y. Transcriptomic analysis of the antibacterial mechanism of ε-polylysine-functionalized magnetic composites against Alicyclobacillus acidoterrestris and its application in apple juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8734-8747. [PMID: 38979962 DOI: 10.1002/jsfa.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Alicyclobacillus acidoterrestris is a common microorganism in fruit juice. It can produce off-odor metabolites and has been considered to be an important factor in juice contamination. Thus, the development of new strategy for the control of A. acidoterrestris has important practical significance. The primary objective of this work was to assess the antibacterial performance of ε-polylysine-functionalized magnetic composites (Fe3O4@MoS2@PAA-EPL) in apple juice and its effect on juice quality. Moreover, the molecular mechanism of Fe3O4@MoS2@PAA-EPL against A. acidoterrestris was explored by RNA sequencing (RNA-Seq). RESULTS Experimental results indicated that the synthesized composites possessed the ability to inhibit the viability of A. acidoterrestris vegetative cells and spores. Besides, investigation on the quality of apple juice incubated with Fe3O4@MoS2@PAA-EPL implied that the fabricated composites displayed negligible adverse effects on juice quality. In addition, the results of RNA-Seq demonstrated that 833 differentially expressed genes (DEGs) were identified in Fe3O4@MoS2@PAA-EPL-treated A. acidoterrestris, which were associated with translation, energy metabolism, amino acid metabolism, membrane transport and cell integrity. CONCLUSION These results suggested that the treatment of Fe3O4@MoS2@PAA-EPL disrupted energy metabolism, repressed cell wall synthesis and caused membrane transport disorder of bacterial cells. This work provides novel insights into the molecular antibacterial mechanism for ε-polylysine-functionalized magnetic composites against A. acidoterrestris. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Rui Cai
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Pihen C, López-Malo A, Ramírez-Corona N. Effect of UV LED and Pulsed Light Treatments on Polyphenol Oxidase Activity and Escherichia coli Inactivation in Apple Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14294-14301. [PMID: 38874060 PMCID: PMC11212052 DOI: 10.1021/acs.jafc.3c08888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.
Collapse
Affiliation(s)
- Christelle Pihen
- Departamento de Ingeniería
Química, Alimentos y Ambiental, Universidad
de las Américas Puebla, ExHda Santa Catarina Mártir s/n, San Andrés
Cholula, Puebla 72810, México
| | - Aurelio López-Malo
- Departamento de Ingeniería
Química, Alimentos y Ambiental, Universidad
de las Américas Puebla, ExHda Santa Catarina Mártir s/n, San Andrés
Cholula, Puebla 72810, México
| | - Nelly Ramírez-Corona
- Departamento de Ingeniería
Química, Alimentos y Ambiental, Universidad
de las Américas Puebla, ExHda Santa Catarina Mártir s/n, San Andrés
Cholula, Puebla 72810, México
| |
Collapse
|
6
|
Kim SJ, Ha S, Dang YM, Chang JY, Mun SY, Ha JH. Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation. J Microbiol Biotechnol 2024; 34:622-633. [PMID: 37997263 PMCID: PMC11016767 DOI: 10.4014/jmb.2310.10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.
Collapse
Affiliation(s)
- Su-Ji Kim
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sanghyun Ha
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Yun-Mi Dang
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Yoon Chang
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - So Yeong Mun
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety · Materials Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
7
|
Shin M, Na G, Kang JW, Kang DH. Application of combined treatment of peracetic acid and ultraviolet-C for inactivating pathogens in water and on surface of apples. Int J Food Microbiol 2024; 411:110519. [PMID: 38101190 DOI: 10.1016/j.ijfoodmicro.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In this study, a combined treatment of peracetic acid (PAA) and 280 nm Ultraviolet-C (UVC) - Light emitting diode (LED) was applied for inactivating foodborne pathogens in water and apples. The combined treatment of PAA (50 ppm) and UVC-LED showed synergistic inactivation effects against Escherichia coli O157:H7 and Listeria monocytogenes in water. In mechanism analysis, PAA/UVC-LED treatment induced more lipid peroxidation, intracellular ROS, membrane, and DNA damage than a single treatment. Among them, membrane damage was the main synergistic inactivation mechanism of combination treatment. Cell rupture and shrink of both pathogens after PAA/UVC-LED treatment were also identified through scanning electron microscope (SEM) analysis. To examine inactivation of pathogens on the surface of apples by PAA, UVC-LED, and their combined treatment, a washing system (WS) was developed and used. Through applying the WS, PAA/UVC-LED treatment effectively inactivated two pathogens in washing solution and on the surface of apples below the detection limit (3.30 log CFU/2000 mL and 2.0 log CFU/apple) within 5 min. In addition, there was no significant difference in color or firmness of apples after PAA/UVC-LED treatment (p > 0.05).
Collapse
Affiliation(s)
- Minjung Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gyumi Na
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
8
|
Salazar F, Pizarro-Oteíza S, Molinett S, Labbé M. Effect of Optimized UV-LED Technology on Modeling, Inactivation Kinetics and Microbiological Safety in Tomato Juice. Foods 2024; 13:430. [PMID: 38338565 PMCID: PMC10855617 DOI: 10.3390/foods13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
This research analyzed, optimized and modeled the inactivation kinetics of pathogenic bacteria (PB1: Escherichia coli O157:H7 and PB2: Listeria monocytogenes) and determined the microbiological safety of tomato juice processed by UV-LED irradiation and heat treatment. UV-LED processing conditions were optimized using response surface methodology (RSM) and were 90% power intensity, 21 min and 273-275 nm (251 mJ/cm2) with R2 > 0.96. Using the optimal conditions, levels of PB1 and PB2 resulted a log reduction of 2.89 and 2.74 CFU/mL, respectively. The Weibull model was efficient for estimating the log inactivation of PB1 and PB2 (CFU/mL). The kinetic parameter δ showed that 465.2 mJ/cm2 is needed to achieve a 90% log (CFU/mL) reduction in PB1 and 511.3 mJ/cm2 for PB2. With respect to the scale parameter p > 1, there is a descending concave curve. UV-LED-treated tomato juice had an 11.4% lower Listeria monocytogenes count than heat-treated juice on day 28 (4.0 ± 0.82 °C). Therefore, UV-LED technology could be used to inactivate Escherichia coli O157:H7 and Listeria monocytogenes, preserving tomato juice for microbiological safety, but studies are required to further improve the inactivation of these pathogens and analyze other fruit and vegetable juices.
Collapse
Affiliation(s)
- Fernando Salazar
- Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Av. Waddington 716, Valparaíso 2340000, Chile
| | - Sebastián Pizarro-Oteíza
- Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Av. Waddington 716, Valparaíso 2340000, Chile
| | - Sebastián Molinett
- Laboratorio de Bionanotecnología, Instituto de Investigaciones Agropecuarias, INIA CRI La Cruz, Chorrillos 86, La Cruz 2280454, Chile
| | - Mariela Labbé
- Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Av. Waddington 716, Valparaíso 2340000, Chile
| |
Collapse
|
9
|
Garzón-García AM, Ruiz-Cruz S, Dussán-Sarria S, Hleap-Zapata JI, Márquez-Ríos E, Del-Toro-Sánchez CL, Tapia-Hernández JA, Canizales-Rodríguez DF, Ocaño-Higuera VM. Effect of UV-C Postharvest Disinfection on the Quality of Fresh-Cut 'Tommy Atkins' Mango. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/159290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
10
|
Genome-wide transcriptional response of Escherichia coli O157:H7 to light-emitting diodes with various wavelengths. Sci Rep 2023; 13:1976. [PMID: 36737629 PMCID: PMC9898497 DOI: 10.1038/s41598-023-28458-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
We investigated the physiological and transcriptomic response of Escherichia coli at the early stationary phase to light-emitting diodes with different wavelengths. The growth and metabolic changes of E. coli O157:H7 were examined under the influence of 465, 520, and 625 nm illuminated light. Under 465 nm illumination, the growth of E. coli O157:H7 was significantly retarded compared to 520 nm and 625 nm illumination and non-illuminated control. Metabolic changes were examined under these illumination and non-illuminated conditions based on transcriptomic reads. Transcriptomic response under 520 nm and 625 nm remained almost similar to control except few up-and down-regulated genes. Carbohydrates metabolic transcriptomic reads were greatly down-regulated under 465 nm illumination compared to 520 nm and 625 nm illumination and non-illuminated control showing depletion of glucose as a sole energy source during the exponential phase. Fatty acid degradation such as fad regulon-related genes was up-regulated in cells under 465 nm illumination revealing the shifting of cells to use fatty acid as a new carbon energy source during the early stationary phase. Exposure of E. coli O157:H7 cells to 465 nm illuminated light down-regulated virulence factor genes such as hlyA, hlyB, hlyC, stx1A, stx2B, paa, and bdm. Under the stress of 465 nm illumination, expression of stress and flagellar motility-related genes were up-regulated causing consumption of energy and reduction in cell growth. Also, oxidative phosphorylated transcriptomic reads were up-regulated under 465 nm illumination probably due to the production of ROS that might involve in the reduction of cell growth during the early stationary phase. These results indicate that pathogenic E. coli O157:H7 respond differentially to a different wavelength of the light-emitting diodes used in this study.
Collapse
|
11
|
Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Int J Food Microbiol 2023; 386:110039. [PMID: 36473316 DOI: 10.1016/j.ijfoodmicro.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alicyclobacillus acidoterrestris has great influence on the quality of apple juice products. In this study, the antibacterial activity of five preservatives (ε-polylysine, propylparaben, monocaprin, octyl gallate and heptylparaben) against A. acidoterrestris and its underlying mechanism were investigated. Results showed that these five preservatives all exerted antibacterial activity through a multiple bactericidal mechanism, and monocaprin and octyl gallate had the highest antibacterial activity, with the minimum inhibitory concentration (MIC) values of 22.5 and 6.25 mg/L, respectively. Five preservatives all changed the permeability of the cell membrane and destroyed the complete cell morphology, with the leakages of the intracellular electrolytes. Moreover, the treatment of ε-polylysine, propylparaben and monocaprin increased the leakage of intracellular protein; propylparaben and octyl gallate reduced the levels of cellular adenosine triphosphate. Also, monocaprin and octyl gallate may stimulate bacteria to release a large amount of reactive oxygen species, so that certain oxidative damage can kill the bacteria. Furthermore, monocaprin and octyl gallate could effectively inactivate the contamination of A. acidoterrestris in apple juices, with the slightly decrease of soluble sugars and organic acids, without significant adverse effects on total sugars and titratable acids. This research highlights the great promise of using monocaprin and octyl gallate as the safe multi-functionalized food additives for food preservations.
Collapse
|
12
|
Lee IH, Cho ER, Kang DH. The effect of quercetin mediated photodynamic inactivation on apple juice properties at different temperature and its bactericidal mechanism. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
B. Soro A, Shokri S, Nicolau-Lapeña I, Ekhlas D, Burgess CM, Whyte P, Bolton DJ, Bourke P, Tiwari BK. Current challenges in the application of the UV-LED technology for food decontamination. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Salazar F, Pizarro-Oteíza S, Kasahara I, Labbé M. Effect of ultraviolet light-emitting diode processing on fruit and vegetable-based liquid foods: A review. Front Nutr 2022; 9:1020886. [PMID: 36523335 PMCID: PMC9745123 DOI: 10.3389/fnut.2022.1020886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 09/10/2023] Open
Abstract
Ultraviolet light-emitting diode (UV-LED) technology has emerged as a non-thermal and non-chemical treatment for preserving liquid fruit and vegetable foods. This technology uses ultraviolet light to interact with the food at different wavelengths, solving problems related to product stability, quality, and safety during storage. UV-LED treatment has been shown to affect microbe and enzyme inactivation, and it increases and improves retention of bioactive compounds. Moreover, computational simulations are a powerful and relevant tool that can be used optimize and improve the UV-LED process. Currently, there are a limited studies of this technology in liquid fruit and vegetable-based foods. This review gathers information on these food type and shows that it is a promising technology for the development of new products, is environmentally friendly, and does not require the addition of chemicals nor heat. This is relevant from an industrial perspective because maintaining the nutritional and organoleptic properties ensures better quality. However, due to the scarce information available on this type of food, further studies are needed.
Collapse
Affiliation(s)
- Fernando Salazar
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
16
|
Hirt B, Fiege J, Cvetkova S, Gräf V, Scharfenberger-Schmeer M, Durner D, Stahl M. Comparison and prediction of UV-C inactivation kinetics of S. cerevisiae in model wine systems dependent on flow type and absorbance. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Katsumata T, Hitomi A, Narita R, Nakamizo A, Shirako T, Nakano S, Hosoya S, Yamazaki M, Aizawa H. Fluorescence-enhanced Si photodiodes for ultraviolet C rays (UVC) measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:085005. [PMID: 36050076 DOI: 10.1063/5.0085868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The ultraviolet C rays (UVC, wavelength λ = 100-280 nm) light generated by a Hg lamp (λ = 254 nm) and UVC light-emitting diodes (LEDs, λ = 265 and 275 nm) was detected using a fluorescence-enhanced silicon photodiode (FE-PD). Ce-doped yttrium aluminum garnet (YAG:Ce), YAG:Pr, YAG:Eu, YAG:Tb, YAG:Cr, Al2O3:Ti, Al2O3:Cr, MgAl2O4:Ti, MgAl2O4:Cr, MgAl2O4:Mn, and commercial fluorescent acrylic resins were tested as phosphor sources to enhance the output signal intensity of the FE-PD irradiated with UVC light. The resulting output signal intensity increased linearly with the UVC light strength, which was adjusted by raising the input current of the UVC LEDs from 0 to 40 mA. The sensitivity of the fabricated UVC detectors, assessed based on the calibration curve slope, varied depending on the phosphor materials. The phosphors effectively enhanced the output signal intensity of the FE-PD, which was up to six times greater than that of the visible and near infrared Si-PD without phosphors; the stronger output signal intensity was achieved using YAG:Tb, YAG:Cr, and a red fluorescent acrylic resin. The visible light emitted by phosphors under UVC irradiation is useful for detecting UVC light by the eye when using FE-PD.
Collapse
Affiliation(s)
- Toru Katsumata
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ami Hitomi
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Ryuhei Narita
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Akiho Nakamizo
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Takahiro Shirako
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Sae Nakano
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Sattawat Hosoya
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Manami Yamazaki
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Hiroaki Aizawa
- Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| |
Collapse
|
18
|
Sahoo M, Panigrahi C, Aradwad P. Management strategies emphasizing advanced food processing approaches to mitigate food borne zoonotic pathogens in food system. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Monalisa Sahoo
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Chirasmita Panigrahi
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Pramod Aradwad
- Division of Agricultural Engineering Indian Agricultural Research Institute New Delhi India
| |
Collapse
|
19
|
Kang JH, Han JY, Lee HS, Ryu S, Kim SB, Cho S, Kang DH, Min SC. Plasma-activated water effectively decontaminates steamed rice cake. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Nie C, Qin X, Duan Z, Huang S, Yu X, Deng Q, Xiang Q, Geng F. Comparative structural and techno-functional elucidation of full-fat and defatted flaxseed extracts: implication of atmospheric pressure plasma jet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:823-835. [PMID: 34232506 DOI: 10.1002/jsfa.11418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The relatively inferior techno-functionality of flaxseed protein/polysaccharide complexes, especially regarding emulsifying and antioxidant activities, has partially limited their implication in the health food system. The present study aimed to investigate the effects of an atmospheric pressure plasma jet (APPJ) on the physicochemical, structural and selected techno-functional properties of flaxseed extracts. RESULTS The results obtained showed that the full-fat and defatted flaxseed extract solutions (5 mg mL-1 ) displayed a sustainable decline in pH (-54.06%, -48.80%, P < 0.05) and zeta potential values (-29.42%, -44.28%, P < 0.05), but a gradual increase in particle sizes, as visualised by an optical microscope, during 0-120 s of APPJ treatment. Moreover, the APPJ led to initial decrease but subsequent increase in protein carbonyls and secondary lipid oxidation products, and concurrently changed the spatial conformation and microstructure of flaxseed extracts, as indicated by endogenous fluorescence properties and scanning electron microscopy (SEM). Additionally, the protein subunit remodeling and gum polysaccharides depolymerization were different for full-fat and defatted flaxseed extracts after 30 s of APPJ exposure. Importantly, the emulsifying and antioxidant activities of defatted flaxseed extract were particularly improved, as assessed by cyro-SEM and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity following 15-30 s of APPJ treatment, as a result of the changing interactions between protein and gum polysaccharides, as well as the release of specific phenolic compounds. CONCLUSION APPJ could serve as a promising strategy for tailoring the specific techno-functionality of flaxseed extracts based on mild structural modification. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengzhen Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Xiaopeng Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Ziqiang Duan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Shasha Huang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Xiao Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, and Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
21
|
Muñoz-Pina S, Duch-Calabuig A, Ros-Lis JV, Verdejo B, García-España E, Argüelles Á, Andrés A. A tetraazahydroxypyridinone derivative as inhibitor of apple juice enzymatic browning and oxidation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Inactivation of Zygosaccharomyces rouxii in organic intermediate moisture apricot and fig by microwave pasteurization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Effect of ultraviolet light emitting diode treatments on microbial load, phenolic and volatile profile of black peppercorns. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Hernandez-Aguilar C, Palma-Tenango M, Miguel-Chavez RS, Dominguez-Pacheco A, Soto-Hernández M, del Carmen Valderrama Bravo M, Ivanov R, Ordoñez-Miranda J. Induced changes of phenolic compounds in turmeric bread by UV-C radiation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [PMCID: PMC8617559 DOI: 10.1007/s11694-021-01231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phenolic compounds of breads added with turmeric at different concentrations (A: 0, B: 1.25, C: 2.5, D: 5 and E:10%) and radiated by UV-C (I. 0, II. 15, III. 30 and IV. 60 s), have been evaluated by HPLC (High-performance liquid chromatography). It is shown that: (i) UV-C radiation modifies the content of phenolic compounds as a function of the percentage of addition of turmeric and the exposure time. There were significant differences (ρ ≤ 0.05) in the concentration of phenolic acids of the turmeric bread (TB): 0 s (sinapic, chlorogenic, protocatechuic), 15 s (chlorogenic, ferulic, protocatechuic, p-hydroxybenzoic, gallic), 30 s (chlorogenic and gallic) and 60 s (chlorogenic). (ii) In TB without radiation appeared, the sinapic, beta resorcylic, syringic and ferulic acids. In the radiation of bread at 15 s, the phenolic acids chlorogenic, ferulic, protocatechuic, p-hydroxybenzoic, gallic, had the highest concentration in the breads added with turmeric at 10% (0.02 μg mL−1), 10% (0.38 μg mL−1), 1.25, 2.5, 5% (0.39 μg mL−1), 10% (1.06 μg mL −1) and 0% (1.10 μg mL−1). (iii) There was a degradation of phenolic acids due to UV-C radiation at 30 and 60 s. At 15 s radiation, sinapic, beta resorcylic, syringic and ferulic acids were not detected in turmeric breads from breads added with turmeric at (1.25, 1.25, 0 and 0%). In radiation at 60 s, beta resorcylic, syringic and ferulic acids were not detected in any bread added with turmeric. In addition, measurements of proximate chemistry, color, sensory analysis, and number of fungal colonies were performed. It is important to mention that the sanitary quality is improved by both UV-C radiation and turmeric. However, the highest results in sanitary quality improvement were due to turmeric.
Collapse
|
25
|
Wang W, Zhao D, Li KE, Xiang Q, Bai Y. Effect of UVC Light-Emitting Diodes on Pathogenic Bacteria and Quality Attributes of Chicken Breast. J Food Prot 2021; 84:1765-1771. [PMID: 34086892 DOI: 10.4315/jfp-21-066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to investigate the inactivation of foodborne pathogens and the quality characteristics of fresh chicken breasts after UVC light-emitting diode (UVC-LED) treatment. Fresh chicken breasts were separately inoculated with Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes at initial populations of 6.01, 5.80, and 6.22 log CFU/cm2, respectively, and then treated with UVC-LED irradiation at 1,000 to 4,000 mJ/cm2. UVC-LED irradiation inactivated the test bacteria in a dose-dependent manner. After UVC-LED treatment at 4,000 mJ/cm2, the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes on chicken breasts were decreased by 1.90, 2.25, and 2.18 log CFU/cm2, respectively. No significant changes (P > 0.05) were found in color, pH, texture, and thiobarbituric acid-reactive substances of chicken breasts following UVC-LED irradiation at doses ≤4,000 mJ/cm2. These results indicate that UVC-LED radiation is a promising technology for reducing the level of microorganisms while maintaining the physicochemical characteristics of poultry meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Wenwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - K E Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
26
|
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr 2021; 8:657090. [PMID: 34169087 PMCID: PMC8217760 DOI: 10.3389/fnut.2021.657090] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.
Collapse
Affiliation(s)
- Harsh Bhaskar Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
27
|
Nyhan L, Przyjalgowski M, Lewis L, Begley M, Callanan M. Investigating the Use of Ultraviolet Light Emitting Diodes (UV-LEDs) for the Inactivation of Bacteria in Powdered Food Ingredients. Foods 2021; 10:797. [PMID: 33917815 PMCID: PMC8068219 DOI: 10.3390/foods10040797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The addition of contaminated powdered spices and seasonings to finished products which do not undergo further processing represents a significant concern for food manufacturers. To reduce the incidence of bacterial contamination, seasoning ingredients should be subjected to a decontamination process. Ultraviolet light emitting diodes (UV-LEDs) have been suggested as an alternative to UV lamps for reducing the microbial load of foods, due to their increasing efficiency, robustness and decreasing cost. In this study, we investigated the efficacy of UV-LED devices for the inactivation of four bacteria (Listeria monocytogenes, Escherichia coli, Bacillus subtilis and Salmonella Typhimurium) on a plastic surface and in four powdered seasoning ingredients (onion powder, garlic powder, cheese and onion powder and chilli powder). Surface inactivation experiments with UV mercury lamps, UVC-LEDs and UVA-LEDs emitting at wavelengths of 254 nm, 270 nm and 365 nm, respectively, revealed that treatment with UVC-LEDs were comparable to, or better than those observed using the mercury lamp. Bacterial reductions in the seasoning powders with UVC-LEDs were less than in the surface inactivation experiments, but significant reductions of 0.75-3 log10 colony forming units (CFU) were obtained following longer (40 s) UVC-LED exposure times. Inactivation kinetics were generally nonlinear, and a comparison of the predictive models highlighted that microbial inactivation was dependent on the combination of powder and microorganism. This study is the first to report on the efficacy of UV-LEDs for the inactivation of several different bacterial species in a variety of powdered ingredients, highlighting the potential of the technology as an alternative to the traditional UV lamps used in the food industry.
Collapse
Affiliation(s)
- Laura Nyhan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| | - Milosz Przyjalgowski
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 P928 Cork, Ireland; (M.P.); (L.L.)
| | - Liam Lewis
- Centre for Advanced Photonics and Process Analysis, Munster Technological University, T12 P928 Cork, Ireland; (M.P.); (L.L.)
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (L.N.); (M.B.)
| |
Collapse
|
28
|
Fan L, Liu X, Dong X, Dong S, Xiang Q, Bai Y. Effects of UVC light-emitting diodes on microbial safety and quality attributes of raw tuna fillets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Effects of UVC light‐emitting diodes on inactivation of Escherichia coli O157:H7 and quality attributes of fresh‐cut white pitaya. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00816-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Baykuş G, Akgün MP, Unluturk S. Effects of ultraviolet-light emitting diodes (UV-LEDs) on microbial inactivation and quality attributes of mixed beverage made from blend of carrot, carob, ginger, grape and lemon juice. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Niu L, Wu Z, Yang L, Wang Y, Xiang Q, Bai Y. Antimicrobial Effect of UVC Light-Emitting Diodes against Saccharomyces cerevisiae and Their Application in Orange Juice Decontamination. J Food Prot 2021; 84:139-146. [PMID: 32916700 DOI: 10.4315/jfp-20-200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT UVC light-emitting diodes (UVC-LEDs) are a novel eco-friendly alternative source of UV light. This study evaluated the inactivation and membrane damage of spoilage yeast Saccharomyces cerevisiae by UVC-LEDs and their application in orange juice pasteurization. The results demonstrated that the antimicrobial effect of UVC-LED treatment against S. cerevisiae was enhanced by increased radiation dose. When the dose of UVC-LED radiation was 1,420 mJ/cm2, the population of S. cerevisiae in yeast extract peptone dextrose broth was reduced by 4.86 log CFU/mL. Through scanning electron microscopy and fluorescent staining, the structure and function of plasma membrane was observed to be severely damaged by UVC-LED treatment. The inactivation efficacy of UVC-LEDs against S. cerevisiae in orange juice also increased with increasing radiation dose. Radiation at 1,420 mJ/cm2 greatly reduced S. cerevisiae in orange juice by 4.44 log CFU/mL and did not induce remarkable changes in pH, total soluble solids, titratable acidity, and color parameters. However, the total phenolic content in orange juice was found to be significantly decreased by UVC-LEDs. These findings contribute to a better comprehension of UVC-LED inactivation and provide theoretical support for its potential application in fruit and vegetable juice processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,(ORCID: https://orcid.org/0000-0003-2334-4001 [L.N.].,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Zihao Wu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Lanrui Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Yanqiu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,https://orcid.org/0000-0002-3052-0969 [Q.X.].,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,https://orcid.org/0000-0002-2074-0351 [Y.B.]).,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
32
|
Zhai Y, Tian J, Ping R, Xiu H, Xiang Q, Shen R, Wang Z. Effects of ultraviolet-C light-emitting diodes at 275 nm on inactivation of Alicyclobacillusacidoterrestris vegetative cells and its spores as well as the quality attributes of orange juice. FOOD SCI TECHNOL INT 2020; 27:334-343. [PMID: 32954800 DOI: 10.1177/1082013220957529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alicyclobacillus acidoterrestris is a thermoacidophilic, spore-forming bacillus. A. acidoterrestris and its spores can survive in pasteurized juices and cause microbial spoilage. In this work, the effects of ultraviolet-C light-emitting diodes at 275 nm on the inactivation of A. acidoterrestris vegetative cells and its spores in commercial pasteurized orange juice were studied. Meanwhile, the effects of ultraviolet-C light-emitting diodes on the quality attributes of the orange juice were also investigated. The quantities of A. acidoterrestris vegetative cells and its spores inoculated in orange juice were reduced by 6.04 and 2.49 log10 CFU/mL after ultraviolet-C light-emitting diode treatment at 220 mJ/cm2, respectively. The Weibull and Weibull plus tail models were satisfactorily fitted to estimate the reductions of A. acidoterrestris vegetative cells and its spores in orange juice, respectively. Physicochemical properties (pH, titratable acidity, total soluble solids, and clarity) of orange juice did not change significantly after exposure to ultraviolet-C light-emitting diodes. However, the total phenolic content of orange juice decreased with increasing fluence. In addition, ultraviolet-C light-emitting diode treatment at a higher fluence led to a noticeable color difference. These results indicate that ultraviolet-C light-emitting diode treatment has a potential application in the juice processing industry.
Collapse
Affiliation(s)
- Yafei Zhai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| | - Jiali Tian
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Ruonan Ping
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Hongxia Xiu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China
| | - Qisen Xiang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| | - Ruiling Shen
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| | - Zhangcun Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China.,Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, PR China
| |
Collapse
|
33
|
Zhang R, Ma Y, Wu DI, Fan L, Bai Y, Xiang Q. Synergistic Inactivation Mechanism of Combined Plasma-Activated Water and Mild Heat against Saccharomyces cerevisiae. J Food Prot 2020; 83:1307-1314. [PMID: 32294174 DOI: 10.4315/jfp-20-065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/05/2020] [Indexed: 02/01/2023]
Abstract
ABSTRACT This study aimed to elucidate the mechanism of synergistic inactivation of Saccharomyces cerevisiae by the combined use of plasma-activated water (PAW) and mild heat (40 to 50°C). A reduction of 4.40 log CFU/mL in S. cerevisiae was observed after the synergistic combination of PAW and mild heat at 50°C for 6 min, whereas the individual treatments of PAW at 25°C and mild heat at 50°C for 6 min resulted in a reduction of 0.27 and 1.92 log CFU/mL, respectively. The simultaneous application of PAW and mild heat caused significant increases in membrane permeability, resulting in the leakage of intracellular components (such as nucleic acids and proteins) and increased uptake of propidium iodide. The combined treatment of PAW and mild heat also resulted in significant increases in the intracellular levels of reactive oxygen species and disruption of mitochondrial membrane potential in S. cerevisiae cells. In summary, this study illustrates the potential of PAW treatment combined with mild heat to rapidly inactivate microorganisms in food products. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Zhang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yunfang Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - D I Wu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liumin Fan
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-3052-0969 [Q.X.]).,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
34
|
Aboud SA, Altemimi AB, Al‐Hilphy ARS, Watson DG. Effect of batch infrared extraction pasteurizer (BIREP)‐based processing on the quality preservation of dried lime juice. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Salam A. Aboud
- Department of Food Science College of AgricultureUniversity of Al‐Basrah Basrah Iraq
| | - Ammar B. Altemimi
- Department of Food Science College of AgricultureUniversity of Al‐Basrah Basrah Iraq
| | - Asaad R. S. Al‐Hilphy
- Department of Food Science College of AgricultureUniversity of Al‐Basrah Basrah Iraq
| | - Dennis G. Watson
- School of Agricultural Sciences Southern Illinois University Carbondale IL USA
| |
Collapse
|
35
|
Yu X, Huang S, Nie C, Deng Q, Zhai Y, Shen R. Effects of atmospheric pressure plasma jet on the physicochemical, functional, and antioxidant properties of flaxseed protein. J Food Sci 2020; 85:2010-2019. [PMID: 32529640 DOI: 10.1111/1750-3841.15184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
The aim of this study was to explore the effect of atmospheric pressure plasma jet (APPJ) on the physicochemical, functional, and antioxidant properties of flaxseed protein following APPJ treatment (0 to 240 s). The results showed that the pH value continuously dropped with the minimum value of 3.45 ± 0.15 after 240 s of APPJ treatment (-61.7%, P < 0.05). The relative protein solubility significantly declined after 15 s of APPJ treatment (-43.1%, P < 0.05), which was accompanied by the evident increase in mean particle size of flaxseed protein in aqueous solution (+157%, P < 0.05). Moreover, the surface hydrophobicity and contents of disulfide bonds gradually raised when the APPJ exposure time extended from 30 to 240 s. Notably, the foaming, emulsifying, and in vitro antioxidant properties of flaxseed protein were significantly improved following short time of APPJ treatment (5 to 15 s), which was paralleled with the changes of spatial conformation, mild protein oxidation, as well as the release of phenolic acids and flavonoids from naturally occurring protein-phenolic complex. Our findings elucidated that APPJ may be considered as an effective strategy to improve the functionality and antioxidant activities of flaxseed protein. PRACTICAL APPLICATION: We had evaluated the effect of APPJ treatment on the physicochemical, functional, and antioxidant properties of flaxseed protein, which was conducive to tailor flaxseed protein with the optimal techno-functionality and antioxidant activities as a potential nano-delivery vehicle.
Collapse
Affiliation(s)
- Xiao Yu
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Shasha Huang
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chengzhen Nie
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oil seeds Processing, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, 430062, China
| | - Yafei Zhai
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Ruiling Shen
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| |
Collapse
|