1
|
Jia R, Zhao J, Tian S, Sadiq FA, Lu S, Gao P, Zhang G. Enzymatic degradation of Ochratoxin A by a novel bacterium, Microbacterium esteraromaticum ASAG1016. Int J Food Microbiol 2025; 434:111155. [PMID: 40112748 DOI: 10.1016/j.ijfoodmicro.2025.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Ochratoxin A (OTA) is a toxic compound of fungal origin that frequently contaminates agricultural products and food, posing a threat to animal and human health. In this study, a species Microbacterium esteraromaticum, designated as strain ASAG1016 and originating from corn soil, has shown great potential to degrade OTA into non-toxic derivative, (ochratoxin alpha) OTα. The strain showed a degradation rate of 100 % in 100 ng/mL OTA solution in 12 h. When applied to naturally moldy feeds and grapes, this strain degraded 97.0 % of the OTA within 12 h. We reported that M. esteraromaticum ASAG1016 primarily removes OTA through the production of carboxypeptidase. We also found that this strain has the potential to inhibit the growth of Penicillium digitatum by 88.5 %. Moreover, M. esteraromaticum ASAG1016 simultaneously degraded 35.05 % and 48.59 % of deoxynivalenol (DON) and T-2, respectively, in grapes and animal feed. The results indicate that M. esteraromaticum ASAG1016 possesses significant potential for OTA in the food and feed industry, suggesting its promising use as a biological control agent in these agricultural products.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| | - Jingyi Zhao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Senmiao Tian
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Faizan Ahmed Sadiq
- Advanced Therapies Group, School of Dentistry, Cardiff University, CF14 4XY Cardiff, Wales, UK
| | - Simeng Lu
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Pengyan Gao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
2
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Lee HJ, Kim HD, Ryu D. Practical Strategies to Reduce Ochratoxin A in Foods. Toxins (Basel) 2024; 16:58. [PMID: 38276534 PMCID: PMC10819544 DOI: 10.3390/toxins16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Ochratoxin A (OTA), a potent nephrotoxin, is one of the most deleterious mycotoxins, with its prevalence in agricultural crops and their processed foods around the world. OTA is a major concern to food safety, as OTA exposure through dietary intake may lead to a significant level of accumulation in the body as a result of its long half-life (about 35 days). Its potent renal toxicity and high risk of exposure as well as the difficulty in controlling environmental factors OTA production has prompted the need for timely information on practical strategies for the food industry to effectively manage OTA contamination during food processing. The effects of various food processes, including both nonthermal and thermal methods, on the reduction in OTA were summarized in this review, with emphasis on the toxicity of residual OTA as well as its known and unknown degradation products. Since complete removal of OTA from foodstuffs is not feasible, additional strategies that may facilitate the reduction in OTA in food, such as adding baking soda and sugars, was also discussed, so that the industry may understand and apply practical measures to ensure the safety of its products destined for human consumption.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Hae Dun Kim
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Dojin Ryu
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
4
|
Ding L, Han M, Wang X, Guo Y. Ochratoxin A: Overview of Prevention, Removal, and Detoxification Methods. Toxins (Basel) 2023; 15:565. [PMID: 37755991 PMCID: PMC10534725 DOI: 10.3390/toxins15090565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Ochratoxins are the secondary metabolites of Penicillium and Aspergillus, among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification. This review mainly summarizes the application of technology in OTA prevention, removal, and detoxification from physical, chemical, and biological aspects, depending on the properties of OTA, and describes the advantages and disadvantages of each method from an objective perspective. Overall, biological methods have the greatest potential to degrade OTA. This review provides some ideas for searching for new strains and degrading enzymes.
Collapse
Affiliation(s)
| | | | | | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (L.D.); (M.H.); (X.W.)
| |
Collapse
|
5
|
Sebastià A, Calleja-Gómez M, Pallarés N, Barba FJ, Berrada H, Ferrer E. Impact of Combined Processes Involving Ultrasound and Pulsed Electric Fields on ENNs, and OTA Mitigation of an Orange Juice-Milk Based Beverage. Foods 2023; 12:foods12081582. [PMID: 37107377 PMCID: PMC10138029 DOI: 10.3390/foods12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, several innovative food processing technologies such as ultrasound (USN) and pulsed electric fields (PEF) have emerged in the market, showing a great potential both alone and in combination for the preservation of fresh and processed products. Recently, these technologies have also shown promising applications to reduce mycotoxin levels in food products. Therefore, the objective of this study is to investigate the potential of the combined treatments USN + PEF and PEF + USN on the reduction of Ochratoxin A (OTA) and Enniatins (ENNs) of an orange juice mixed with milk beverage. For this purpose, the beverages were elaborated in the laboratory and individually spiked with mycotoxins at a concentration of 100 µg/L. They were then treated by PEF (30 kV, 500 kJ/Kg) and USN (20 kHz, 100 W, at a maximum power for 30 min). Finally, mycotoxins were extracted using dispersive liquid-liquid microextraction (DLLME), and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS-IT) was employed to determine them. The results showed promising applications, with reductions up to 50% for OTA and up to 47% for Enniatin B (ENNB) after the PEF + USN treatment combination. Lower reduction rates, up to 37%, were obtained with the USN + PEF combination. In conclusion, the combination of USN and PEF technologies could be a useful tool to reduce mycotoxins in fruit juices mixed with milk.
Collapse
Affiliation(s)
- Albert Sebastià
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| | - Mara Calleja-Gómez
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| | - Noelia Pallarés
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| | - Emilia Ferrer
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Jung Lee H, Dun Kim H, Ryu D. Protective Effect of alpha-Tocopherol against Ochratoxin A in Kidney Cell Line HK-2. J Food Prot 2023; 86:100082. [PMID: 36997025 DOI: 10.1016/j.jfp.2023.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Food safety is a top priority for the protection of infants and young children. Ochratoxin A (OTA) is an emerging concern due to its high toxicity and occurrence in a wide range of agricultural crops and their derived food products including those foods and snacks destined for infants and young children. OTA is considered as a possible human carcinogen and its main target organ is the kidney. The objective of this study was to investigate the protective effect of α-tocopherol against oxidative stress induced by OTA using human proximal tubule epithelial cells (HK-2). OTA showed dose-dependent increase in cytotoxicity (IC50 = 161 nM, p<0.05) at 48 h, while treatment up to 2 mM α-tocopherol did not change cell viability. Levels of the reduced form of glutathione (GSH) were decreased with α-tocopherol treatment, although the ratio of the oxidative form (GSSG) to GSH remained the same. Among several genes associated with oxidative stress, expression of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione reductase (GSR), and kidney injury molecule-1 (KIM-1) were significantly up-regulated by OTA treatment. CAT and GSR showed decreased expression at 0.5 - 2 mM α-tocopherol and OTA at IC50 value, KIM-1 was decreased at 0.5 mM α-tocopherol and OTA at IC50 value, and nuclear factor erythroid 2-related factor 2 (Nrf2) was decreased at 0.5 - 1 mM α-tocopherol and OTA at IC50 value. In addition, the levels of malondialdehyde (MDA) were increased significantly by OTA while significantly decreased by α-tocopherol. The results show that α-tocopherol may alleviate potential OTA-induced renal damage and oxidative stress through reducing cytotoxicity and enhancing the antioxidant defense systems.
Collapse
|
7
|
Yang Z, Xie C, Bao Y, Liu F, Wang H, Wang Y. Oat: Current state and challenges in plant-based food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
8
|
Wang L, Hua X, Shi J, Jing N, Ji T, Lv B, Liu L, Chen Y. Ochratoxin A: Occurrence and recent advances in detoxification. Toxicon 2022; 210:11-18. [PMID: 35181402 DOI: 10.1016/j.toxicon.2022.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022]
Abstract
Ochratoxin A (OTA), one of the most important mycotoxins, is mainly produced by fungi in the genera Aspergillus and Penicillium, and commonly found in food and agricultural products. In addition to causing significant economic losses, the occurrence of OTA in foods poses a serious threat to human health. Therefore, it is very important to develop approaches to control or detoxify OTA contamination and thus ensure food safety. In this paper, we review the source and occurrence of OTA in food and agricultural products and the latest achievements in the removal and detoxification of OTA using physical, chemical, and biological methods, with specific attention to influencing factors and mechanisms related to the biodetoxification of OTA. Moreover, the advantages and disadvantages of these methods and their potential application prospect were also discussed.
Collapse
Affiliation(s)
- Lan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xia Hua
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jie Shi
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ninghao Jing
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Bing Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yun Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|