1
|
da Silva Sasaki JC, Su Y, Spinosa WA, de Lima Lopes Filho PE, Burd BS, Scontri M, Tanaka JL, Gonçalves RP, Felisbino BB, Dos Santos LS, Cai Y, Mussagy CU, Cao W, Piazza RD, da Costa-Marques RF, Neto ÁB, Herculano RD. Eco-sustainable, edible, biodegradable and antioxidant pectin and bacterial cellulose films loaded with coconut oil for strawberry preservation. Int J Biol Macromol 2025; 308:142701. [PMID: 40174826 DOI: 10.1016/j.ijbiomac.2025.142701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Strawberry is one of the most problematic fresh fruits susceptible to damage or mold due to their sensitive skin. For this, we developed films made of bacterial cellulose [BC, 25 % (w/w)], pectin [P, 75 % (w/w)] loaded with coconut oil for strawberry preservation. XRD patterns of the BC showed three distinct peaks at Bragg angles (2θ) of 14.6°, 16.9°, and 22.7°, indicating the structural characteristics of cellulose I. CG-MS demonstrated that coconut oil contained triacylglycerols like lauric acid, linoleic acid, and dodecanoic acid. Moreover, coconut oil showed antioxidant activity of about 50 % and antimicrobial activity in yeast extracted from strawberries. FTIR spectroscopy, TGA/DTG, mechanical testing, water vapor permeability, AFM and SEM images showed that the oil was successfully incorporated into the film. Next, mass loss and swelling degree and wettability studies revealed that formed films maintained hydrophobic characteristics. In fact, these films presented a high-water vapor barrier because preserved a major part of the characteristics of the biocellulose, turning the bioplastics inert to water. In addition, coconut oil loaded into BC + P bioplastic presented low release due to its hydrophobicity character. Despite this, our bioplastic worked as a mechanical barrier, protecting the fruits from microorganisms and other forms of damage. Furthermore, antioxidant activity from both film-formed was similar (28 %), and these bioplastics preserved the strawberries for 192 h, whereas uncoated fruits degraded at 72 h. Indeed, our bioplastics were more effective in reducing fruit mass loss, especially BC + P + O film. Our findings showed that the essential oil acted as a reducing agent of strawberry mass loss, decreasing its skin transpiration, being an inexpensive and feasible alternative for fruits preservation.
Collapse
Affiliation(s)
- Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; São Paulo State University (UNESP), Postgraduate Program in Biomaterials and Bioprocess Engineering, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road (PR 445), Londrina, PR 86057-970, Brazil
| | - Paulo Eduardo de Lima Lopes Filho
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; São Paulo State University (UNESP), Postgraduate Program in Biomaterials and Bioprocess Engineering, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Jean Lucas Tanaka
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Rogerio Penna Gonçalves
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Bianca Bridi Felisbino
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo (USP), 3900 Bandeirantes Avenue, Ribeirão Preto, SP 14.040-901, Brazil
| | - Yi Cai
- College of Health and Human Development, Family and Consumer Sciences Department, California State University, Northridge, CA 91324, USA
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Wei Cao
- College of Health and Human Development, Family and Consumer Sciences Department, California State University, Northridge, CA 91324, USA
| | - Rodolfo D Piazza
- Laboratory of Magnetic Materials and Colloids, Department of Analytical Chemistry, Physical Chemistry and Inorganic, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP 14800-060, Brazil
| | - Rodrigo Fernando da Costa-Marques
- Laboratory of Magnetic Materials and Colloids, Department of Analytical Chemistry, Physical Chemistry and Inorganic, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara, SP 14800-060, Brazil
| | - Álvaro Baptista Neto
- São Paulo State University (UNESP), Postgraduate Program in Biomaterials and Bioprocess Engineering, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil; São Paulo State University (UNESP), Postgraduate Program in Biomaterials and Bioprocess Engineering, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; College of Health and Human Development, Family and Consumer Sciences Department, California State University, Northridge, CA 91324, USA.
| |
Collapse
|
2
|
Passão C, Almeida-Aguiar C, Cunha A. Modelling the In Vitro Growth of Phytopathogenic Filamentous Fungi and Oomycetes: The Gompertz Parameters as Robust Indicators of Propolis Antifungal Action. J Fungi (Basel) 2023; 9:1161. [PMID: 38132762 PMCID: PMC10744596 DOI: 10.3390/jof9121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Propolis is a resinous mixture produced by honeybees, mainly from plant exudates. With a rich chemical composition including many phenolic compounds, mostly responsible for its biological properties, namely antimicrobial ones, propolis may be a promising alternative to synthetic pesticides. The study of propolis from the south of Portugal and of its potential against phytopathogenic agents are still very recent and different methodological approaches hinder a comparison of efficacies. In this context, we aimed to test the value of a mathematical model for the multiparametric characterization of propolis' antifungal action on solid medium assays. An ethanol extract (EE) of a propolis sample harvested in 2016 from Alves (A16) was characterized in terms of phenolic composition and antimicrobial potential against five phytopathogenic species. A16.EE (500-2000 µg/mL) inhibited the mycelial growth of all the species, with Phytophthora cinnamomi and Biscogniauxia mediterranea being the most susceptible and Colletotrichum acutatum being the least affected. The Gompertz mathematical model proved to be a suitable tool for quantitatively describing the growth profiles of fungi and oomycetes, and its parameters exhibit a high level of discrimination. Our results reveal that propolis extracts may have potential applications beyond traditional uses, particularly within the agri-food sector, allowing beekeepers to make their businesses more profitable and diversified.
Collapse
Affiliation(s)
- Catarina Passão
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Cristina Almeida-Aguiar
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Mohd Israfi NA, Mohd Ali MIA, Manickam S, Sun X, Goh BH, Tang SY, Ismail N, Abdull Razis AF, Ch’ng SE, Chan KW. Essential oils and plant extracts for tropical fruits protection: From farm to table. FRONTIERS IN PLANT SCIENCE 2022; 13:999270. [PMID: 36247633 PMCID: PMC9559231 DOI: 10.3389/fpls.2022.999270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The tropical fruit industry in Malaysia makes up a large proportion of the agriculture sector, contributing to the local economy. Due to their high sugar and water content, tropical fruits are prone to pathogenic infections, providing optimal microorganism growth conditions. As one of the largest exporters of these fruits globally, following other Southeast Asian countries such as Thailand, Indonesia and the Philippines, the quality control of exported goods is of great interest to farmers and entrepreneurs. Traditional methods of managing diseases in fruits depend on chemical pesticides, which have attracted much negative perception due to their questionable safety. Therefore, the use of natural products as organic pesticides has been considered a generally safer alternative. The extracts of aromatic plants, known as essential oils or plant extracts, have garnered much interest, especially in Asian regions, due to their historical use in traditional medicine. In addition, the presence of antimicrobial compounds further advocates the assessment of these extracts for use in crop disease prevention and control. Herein, we reviewed the current developments and understanding of the use of essential oils and plant extracts in crop disease management, mainly focusing on tropical fruits. Studies reviewed suggest that essential oils and plant extracts can be effective at preventing fungal and bacterial infections, as well as controlling crop disease progression at the pre and postharvest stages of the tropical fruit supply chain. Positive results from edible coatings and as juice preservatives formulated with essential oils and plant extracts also point towards the potential for commercial use in the industry as more chemically safe and environmentally friendly biopesticides.
Collapse
Affiliation(s)
- Nur Aisyah Mohd Israfi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Muhamad Israq Amir Mohd Ali
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
- National Demonstration Centre for Experimental Mechanical Engineering Education, Shandong University, Jinan, China
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Subang Jaya, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Laboratory of Food Security and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Soo Ee Ch’ng
- CAIQTEST Malaysia Sdn. Bhd., Shah Alam, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|