1
|
Zhang J, Zhang J, Zhang L, Qin Z, Wang T. Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety. Foods 2025; 14:1157. [PMID: 40238286 PMCID: PMC11989113 DOI: 10.3390/foods14071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Intelligent and antimicrobial packaging technologies are transforming meat preservation by enhancing food safety, enabling real-time quality monitoring, and extending shelf life. This review critically examines advancements in intelligent systems, including radio frequency identification (RFID), gas sensors, time-temperature indicators (TTIs), and colorimetric indicators for continuous freshness assessment. A key focus is natural compound-based chromogenic indicators, which establish visual spoilage detection via distinct color transitions. Concurrently, antimicrobial systems integrating inorganic compounds, organic bioactive agents, and natural antimicrobials effectively inhibit microbial growth. Strategic incorporation of these agents into polymeric matrices enhances meat safety, supported by standardized evaluation protocols for regulatory compliance and quality assurance. Future research should prioritize optimizing sensitivity, cost-efficiency, and sustainability, alongside developing biodegradable materials to balance food safety with reduced environmental impact, advancing sustainable food supply chains.
Collapse
Affiliation(s)
| | | | | | | | - Tianxing Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (J.Z.); (L.Z.); (Z.Q.)
| |
Collapse
|
2
|
Wang S, Wang Y, Cheng C, Zhang H, Jin J, Pang X, Song X, Xie Y. PotF Affects the Antibacterial Activity of Plantaricin BM-1 Against Escherichia coli K12 by Modulating Biofilm Formation and Cell Membrane Integrity. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10518-1. [PMID: 40106189 DOI: 10.1007/s12602-025-10518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Plantaricin BM-1 exhibits antibacterial activity against Escherichia coli; however, the underlying mechanism remains unclear. This study aimed to investigate the function of PotF, a putrescine-binding protein, in regulating the antibacterial activity of plantaricin BM-1 against E. coli K12. The antibacterial activity of plantaricin BM-1 against E. coli K12 and JW0838 cells was assessed using growth curves. The differences in biofilm formation between the two E. coli strains were evaluated by crystal violet staining and confocal laser scanning microscopy. The effects of plantaricin BM-1 on E. coli morphology and cell membrane integrity were investigated by electron microscopy and lactate dehydrogenase release assays. Proteomics was used to screen for differentially expressed proteins (DEPs) that are potentially involved in regulating the antibacterial mechanism. The null mutation of potF enhanced the antibacterial effects of plantaricin BM-1 on E. coli, and caused a significant decrease (p < 0.05) in the biofilms of E. coli JW0838. The plantaricin disrupted the cell membrane of E. coli JW0838. Proteomic analysis revealed that potF mutation significantly affected several DEPs involved in biofilm formation. Plantaricin BM-1 exhibited significantly enhanced antibacterial activity against biofilm-associated gene mutants compared to wild-type E. coli K12. These findings enhance our understanding of the bacteriostasis of class IIa bacteriocins against Gram-negative microorganisms.
Collapse
Affiliation(s)
- Shichun Wang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yawen Wang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Congyang Cheng
- Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, China
| | - Hongxing Zhang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Xiaona Pang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Xiaodong Song
- Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, China.
| | - Yuanhong Xie
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
3
|
Liang M, Wang H, Zhou Z, Huang Y, Suo H. Antibacterial mechanism of Lactiplantibacillus plantarum SHY96 cell-free supernatant against Listeria monocytogenes revealed by metabolomics and potential application on chicken breast meat preservation. Food Chem X 2025; 25:102078. [PMID: 39758074 PMCID: PMC11699396 DOI: 10.1016/j.fochx.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The cell-free supernatant of Lactiplantibacillus plantarum (LCFS) is considered a potential natural antimicrobial agent due to its outstanding antimicrobial activity. This study demonstrated that the cell-free supernatant of L. plantarum SHY96 (LCFS96) effectively inhibits the growth and biofilm formation of L. monocytogenes CMCC(B)54002 (L. monocytogenes_02) by reducing cell metabolic activity and damaging cell structure. Metabolomic analysis revealed that LCFS96 significantly altered 450 intracellular metabolites, affecting key metabolic pathways including linoleic acid metabolism, pyrimidine metabolism, purine metabolism, pantothenic acid and CoA biosynthesis, and the TCA cycle. Additionally, application of LCFS96 significantly reduced L. monocytogenes_02 viable counts by 84.93%, while maintaining the pH, TVB-N and organoleptic properties of chicken meat under refrigeration at 4 °C for 12 days. These findings highlight the antimicrobial mechanism and potential application of LCFS96 in extending the shelf-life of meat products.
Collapse
Affiliation(s)
- Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| | - Zhaoquan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| |
Collapse
|
4
|
Capri FC, Gaglio R, Botta L, Settanni L, Alduina R. Selection of starter lactic acid bacteria capable of forming biofilms on wooden vat prototypes for their future application in traditional Sicilian goat's milk cheese making. Int J Food Microbiol 2024; 419:110752. [PMID: 38781647 DOI: 10.1016/j.ijfoodmicro.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
In this study, 327 presumptive lactic acid bacteria (LAB) were isolated from goats' milk acid curds produced at a Sicilian dairy farm with the aim to identify potential starter cultures for traditional cheeses. All isolates were first processed by randomly amplified polymorphic DNA (RAPD)-PCR analysis. This approach identified 63 distinct strains which were evaluated for their acidifying capacity. Only 15 strains specifically stood out for their acidification capacity and were identified through 16S rRNA gene sequencing as Lactococcus lactis (11 strains) Enterococcus faecalis (three strains), and Ligilactobacillus animalis (one strain). Notably, all 15 LAB isolates produced bacteriocin-like inhibitory substances and anti-biofilm compounds, against both planktonic and biofilm forms of Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, and Staphylococcus aureus, albeit at varying levels. Among these 15 LAB, En. faecalis RGM25 and Lc. lactis RGM55, susceptible to five antibiotics tested, were put in contact with wooden vat prototypes, because all equipment used in traditional cheese production in Sicily are made of wood. Scanning electron microscopy and bacterial plate counts of the wooden vat prototypes showed the development of biofilms at levels of approximately 6.0 log CFU/cm2. Overall, this study contributes to establishing a custom-made LAB starter cultures with bio-preservatives properties for Sicilian cheese productions.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Bldg. 6, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133 Palermo, Italy
| |
Collapse
|
5
|
Li J, Zhang Q, Zhao J, Zhang H, Chen W. Lactobacillus-derived components for inhibiting biofilm formation in the food industry. World J Microbiol Biotechnol 2024; 40:117. [PMID: 38429597 DOI: 10.1007/s11274-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Biofilm, a microbial community formed by especially pathogenic and spoilage bacterial species, is a critical problem in the food industries. It is an important cause of continued contamination by foodborne pathogenic bacteria. Therefore, removing biofilm is the key to solving the high pollution caused by foodborne pathogenic bacteria in the food industry. Lactobacillus, a commonly recognized probiotic that is healthy for consumer, have been proven useful for isolating the potential biofilm inhibitors. However, the addition of surface components and metabolites of Lactobacillus is not a current widely adopted biofilm control strategy at present. This review focuses on the effects and preliminary mechanism of action on biofilm inhibition of Lactobacillus-derived components including lipoteichoic acid, exopolysaccharides, bacteriocins, secreted protein, organic acids and some new identified molecules. Further, the review discusses several modern biofilm identification techniques and particularly interesting new technology of biofilm inhibition molecules. These molecules exhibit stronger inhibition of biofilm formation, playing a pivotal role in food preservation and storage. Overall, this review article discusses the application of biofilm inhibitors produced by Lactobacillus, which would greatly aid efforts to eradicate undesirable bacteria from environment in the food industries.
Collapse
Affiliation(s)
- Jiaxun Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Li Y, Tang X, Yang Z, He J, Ma N, Huang A, Shi Y. BCp12/PLA combination: A novel antibacterial agent targeting Mur family, DNA gyrase and DHFR. Int J Food Microbiol 2023; 406:110370. [PMID: 37678070 DOI: 10.1016/j.ijfoodmicro.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The combination of natural antimicrobial peptide BCp12/phenyllatic acid (BCp12/PLA) presents a more efficient antibacterial effect, but its antibacterial mechanism remains unclear. This study studied the synergistic antibacterial mechanism of BCp12 and PLA against S. aureus. The results demonstrated that the BCp12/PLA combination presented a synergistic antibacterial effect against S. aureus, with a fractional inhibitory concentration of 0.05. Furthermore, flow cytometry and scanning electron microscope analysis revealed that BCp12 and PLA synergistically promoted cell membrane disruption compared with the group treated only with one compound, inducing structural cell damage and cytoplasmic leakage. In addition, fluorescence spectroscopy analysis suggested that BCp12 and PLA synergistically influenced genomic DNA. BCp12 and PLA targeted enzymes related to peptidoglycan and DNA synthesis and interacted by hydrogen bonding and hydrophobic interactions with mur enzymes (murC, murD, murE, murF, and murG), dihydrofolate reductase, and DNA gyrase. Additionally, the combined treatment successfully inhibited microbial reproduction in the storage of pasteurized milk, indicating that the combination of BCp12 and PLA can be used as a new preservative strategy in food systems. Overall, this study could provide potential strategies for preventing and controlling foodborne pathogens.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaozhao Tang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Jinze He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ni Ma
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
7
|
Song D, Su Q, Jia A, Fu S, Ma X, Li T, Man C, Yang X, Jiang Y. A Method to Directly Identify Cronobacter sakazakii in Liquid Medium by MALDI-TOF MS. Foods 2023; 12:foods12101981. [PMID: 37238798 DOI: 10.3390/foods12101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry has been widely used as an emerging technology for the rapid identification of microorganisms. Cronobacter sakazakii (C. sakazakii) is a food-borne pathogen of particular importance to the powdered infant formula (PIF) processing environment due to its high lethality in infants. However, the traditional solid spotting detection method of pretreating samples for MALDI-TOF MS leads only to qualitative detection of C. sakazakii. We developed a new, low-cost, robust liquid spotting pretreatment method and used a response surface methodology to optimize its parameters. The applicability, accuracy, and quantitative potential were measured for different types of samples. The optimal parameters of this method were as follows: a volume of 70% formic acid of 25 μL, treatment with ultrasound at 350 W for 3 min, and a volume of acetonitrile added of 75 μL. These conditions led to the highest identification score for C. sakazakii (1926.42 ± 48.497). This method was found to detect bacteria accurately and reproducibly. When 70 strains of C. sakazakii isolates were analyzed with this method, the identification accuracy was 100%. The detection limit of C. sakazakii in environmental and PIF samples was 4.1 × 101 cfu/mL and 2.72 × 103 cfu/mL, respectively.
Collapse
Affiliation(s)
- Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Qunchao Su
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Ai Jia
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Shiqian Fu
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoming Ma
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Tiantian Li
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Chaoxin Man
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
8
|
A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Ismael M, Wang T, Yue F, Cui Y, Yantin Q, Qayyum N, Lü X. A comparison of mining methods to extract novel bacteriocins from Lactiplantibacillus plantarum NWAFU-BIO-BS29. Anal Biochem 2023; 661:114938. [PMID: 36379249 DOI: 10.1016/j.ab.2022.114938] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022]
Abstract
One of the most important challenges in the field of food safety is producing natural and safe substances that act against pathogens in food. Bacteriocins and antimicrobial peptides (AMPs) have an anti-pathogens effect for both Gram-negative and positive bacteria. The aim of this study was to isolate and characterize safe lactic acid bacteria from traditional Chinese fermented milk that can produce anti-bacterial molecule compounds and does not harm for humans and animals. Lactiplantibacillus plantarum NWAFU-BIO-BS29 was found to be safe, lacking 16 genes for virulence factors, biogenic amine production and antibiotic resistance, and no hemolysis activity was observed. In contrast, it has ability to produce a novel potential bacteriocin of Plantaricin Bio-LP1. Precipitation of bacteriocin by Ethyl-acetate proved to be a suitable method for the extraction the bacteriocin. Whilst, the purification steps were performed as follows: the protein purification system (AKTA-Purifier equipped with HiTrap (gel column)), followed by reversed phase high-performance liquid chromatography (RP-HPLC) equipped with C18 column. In addition, LC-MS-MS and MALDI-TOF were used to identify the peptide sequences and estimate the molecular weight, respectively. Notably, among the eight peptide sequences considered, a couple of sequences have been announced as uncharacterized in protein database (FDYYFFDKK and KEIDDNSIAVK) with a molecular mass less than 1.3 kDa. The MIC was 0.552 mg/ml and exhibited high stability under various temperature, pH, and enzymes conditions. The best activity was found at temperature and pH of 4 °C and 6 °C, respectively, which are the optimal conditions for preservation of most foods. We concluded that, the described method can arouse a growing interest in mining novel bacteriocins. Plantaricin Bio-LP1 is a potentially unique bacteriocin that is effective as a bio-preservative and could make a promising contribution in food and animal feed industries or in the medical field with further clinical studies.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Sudanese Standard and Metrology Organization, Khartoum, 13573, Sudan.
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Yanlong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Qin Yantin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Nageena Qayyum
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
11
|
Bian Z, Liu W, Jin J, Hao Y, Jiang L, Xie Y, Zhang H. Rcs phosphorelay affects the sensitivity of Escherichia coli to plantaricin BM-1 by regulating biofilm formation. Front Microbiol 2022; 13:1071351. [PMID: 36504793 PMCID: PMC9729257 DOI: 10.3389/fmicb.2022.1071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Plantaricin BM-1 is a class IIa bacteriocin produced by Lactobacillus plantarum BM-1 that exerts significant antibacterial activity against many foodborne bacteria. Studies have shown that class IIa bacteriocins inhibit Gram-positive bacteria via the mannose phosphotransferase system; however, their mechanism of action against Gram-negative bacteria remains unknown. In this study, we explored the mechanism through which the Rcs phosphorelay affects the sensitivity of Escherichia coli K12 cells to plantaricin BM-1. Methods and Results: The minimum inhibitory concentrations of plantaricin BM-1 against E. coli K12, E. coli JW5917 (rcsC mutant), E. coli JW2204 (rcsD mutant), and E. coli JW2205 (rcsB mutant) were 1.25, 0.59, 1.31, and 1.22 mg/ml, respectively. Growth curves showed that E. coli JW5917 sensitivity to plantaricin BM-1 increased to the same level as that of E. coli K12 after complementation. Meanwhile, scanning electron microscopy and transmission electron microscopy revealed that, under the action of plantaricin BM-1, the appearance of E. coli JW5917 cells did not significantly differ from that of E. coli K12 cells; however, cell contents were significantly reduced and plasmolysis and shrinkage were observed at both ends. Crystal violet staining and laser scanning confocal microscopy showed that biofilm formation was significantly reduced after rcsC mutation, while proteomic analysis identified 382 upregulated and 260 downregulated proteins in E. coli JW5917. In particular, rcsC mutation was found to affect the expression of proteins related to biofilm formation, with growth curve assays showing that the deletion of these proteins increased E. coli sensitivity to plantaricin BM-1. Discussion: Consequently, we speculated that the Rcs phosphorelay may regulate the sensitivity of E. coli to plantaricin BM-1 by affecting biofilm formation. This finding of class IIa bacteriocin against Gram-negative bacteria mechanism provides new insights.
Collapse
Affiliation(s)
- Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yanling Hao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| |
Collapse
|
12
|
Xin WG, Wu G, Ying JP, Xiang YZ, Jiang YH, Deng XY, Lin LB, Zhang QL. Antibacterial activity and mechanism of bacteriocin LFX01 against Staphylococcus aureus and Escherichia coli and its application on pork model. Meat Sci 2022; 196:109045. [DOI: 10.1016/j.meatsci.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022]
|
13
|
Jiang YH, Ying JP, Xin WG, Yang LY, Li XZ, Zhang QL. Antibacterial activity and action target of phenyllactic acid against Staphylococcus aureus and its application in skim milk and cheese. J Dairy Sci 2022; 105:9463-9475. [DOI: 10.3168/jds.2022-22262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022]
|
14
|
Zhang YM, Jiang YH, Li HW, Li XZ, Zhang QL. Purification and characterization of Lactobacillus plantarum-derived bacteriocin with activity against Staphylococcus argenteus planktonic cells and biofilm. J Food Sci 2022; 87:2718-2731. [PMID: 35470896 DOI: 10.1111/1750-3841.16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
Bacteriocins inhibit various foodborne bacteria in planktonic and biofilm forms. However, bacteriocins with antibacterial and antibiofilm activity against Staphylococcus argenteus, a pathogen that can cause food poisoning, are still poorly known. Here, the novel bacteriocin LSB1 derived from Lactobacillus plantarum CGMCC 1.12934 was purified and characterized extensively. LSB1 had a molecular weight of 1425.78 Da and an amino acid sequence of YIFVTGGVVSSLGK. Moreover, LSB1 exhibited excellent stability under heat and acid-base stress and presented sensitivity to pepsin and proteinase K. LSB1 exhibited an extensive antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration of LSB1 against S. argenteus_70917 was 10.36 µg/ml, which was lower than that of most of the previously found bacteriocins against Staphylococcus strains. Furthermore, LSB1 significantly inhibited S. argenteus_70917 planktonic cells (p < 0.01) and decreased their viability. Scanning electron microscopy analysis revealed that cell membrane permeability of S. argenteus_70917 upon exposure to LSB1 showed leakage of cytoplasmic contents and rupture, leading to cell death. In addition, biofilm formation ability of S. argenteus_70917 was significantly (p < 0.01) impaired by LSB1, with the percent inhibition of 35% at 10 µg/ml and 80% at 20 µg/ml. Overall, this study indicates that LSB1 can be considered a potential antibacterial agent in the control of S. argenteus in both planktonic and biofilm states. PRACTICAL APPLICATION: Foodborne pathogenic bacteria, such as Staphylococcus argenteus, and their biofilms represent potential risks for food safety. In recent years, customers' demand for "natural" products has increased food control. This study describes the novel bacteriocin LSB1 produced by the lactic acid bacterium species Lactobacillus plantarum. LSB1 showed strong antibacterial and antibiofilm activity against S. argenteus as well as thermal and acid-alkaline stability. Furthermore, the mechanisms of action of LSB1 on S. argenteus were preliminarily explored. These results indicate that LSB1 might be potentially used as an effective and natural food preservative.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
15
|
Yang K, Shi Y, Li Y, Wei G, Zhao Q, Huang A. iTRAQ-Based Quantitative Proteomic Analysis of Antibacterial Mechanism of Milk-Derived Peptide BCp12 against Escherichia coli. Foods 2022; 11:foods11050672. [PMID: 35267305 PMCID: PMC8909071 DOI: 10.3390/foods11050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
BCp12 is a novel casein-derived antibacterial peptide with a broad-spectrum antibacterial effect. However, its action mechanism against E. coli is unknown. In this study, the growth curve showed that BCp12 had excellent antibacterial activity against E. coli. Red (propidium iodide staining) and green (fluorescein isothiocyanate staining) fluorescence signals were detected at the edges of the E. coli cells treated with BCp12. scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that E. coli cells became rough and shrunken, and part of the cell contents leaked to form a cavity. Furthermore, the iTRAQ proteome analysis showed that 193 and 174 proteins were significantly up-regulated and down-regulated, respectively, after BCp12 treatment. Four enzymes involved in fatty acid degradation of E. coli were down-regulated, disrupting the synthesis of cell membranes. Molecular docking and gel retardation assays showed that BCp12 could bind to genes encoding four key enzymes involved in the fatty acid degradation pathway through hydrogen bonding and hydrophobic interactions, thus significantly inhibiting their activities. Overall, the results indicate that BCp12 inhibits the growth of E. coli, causing metabolic disorders, thus destroying the structure of cell membranes.
Collapse
|
16
|
Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, Li X, Lu Y, Yuk HG. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022; 21:1657-1676. [PMID: 35181977 DOI: 10.1111/1541-4337.12922] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoye Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
17
|
Shi Y, Li Y, Yang K, Wei G, Huang A. Antimicrobial Peptide BCp12 Inhibits Staphylococcus aureus Growth by Altering Lysine Malonylation Levels in the Arginine Synthesis Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:403-414. [PMID: 34942069 DOI: 10.1021/acs.jafc.1c05894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To adapt to external stimuli, bacteria fine-tune important protein activities using post-translational modifications. The present study provides novel insights into the molecular mechanism of the antimicrobial peptide BCp12. We demonstrate that BCp12 significantly suppressed bacterial growth, induced cell apoptosis, and modulated overall malonylation levels in Staphylococcus aureus cells. Malonylateomic analysis was performed to identify the proteins malonylated by the BCp12 treatment of S. aureus. In total, 53 malonylated proteins (17 up-regulated, 36 down-regulated) were identified as differentially expressed malonylated proteins (DMPs; > 1.5-fold or <0.67-fold, P < 0.05). This result was confirmed via the identification of 21 differential metabolites (DMs; VIP > 1, P < 0.05) in the arginine and proline metabolome. Bioinformatic analysis revealed that the DMPs and DMs were especially enriched in the arginine synthesis pathway. By integrating our lysine malonylational and metabolomic data, we provide new insights into the mechanism by which BCp12 inhibits S. aureus.
Collapse
Affiliation(s)
- Yanan Shi
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yufang Li
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kun Yang
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science &Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|